Improving Learning time in Unsupervised Image-to-Image Translation

Tae-Hong Min, Do-Yun Kim, Young-June Choi
{"title":"Improving Learning time in Unsupervised Image-to-Image Translation","authors":"Tae-Hong Min, Do-Yun Kim, Young-June Choi","doi":"10.1109/ICAIIC.2019.8669076","DOIUrl":null,"url":null,"abstract":"Unsupervised image-to-image translation can map local textures between two domains, but typically fails when the domain requires big shape changes. It is difficult to learn how to make such big change using the basic convolution layer, and furthermore it takes much time to learn. For faster learning and high-quality image generation, we propose to use Cycle GAN that is combined with Resnet in a network that is connected with the residual block for upsampling to make big shape change and construct faster image-to-image translation.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Unsupervised image-to-image translation can map local textures between two domains, but typically fails when the domain requires big shape changes. It is difficult to learn how to make such big change using the basic convolution layer, and furthermore it takes much time to learn. For faster learning and high-quality image generation, we propose to use Cycle GAN that is combined with Resnet in a network that is connected with the residual block for upsampling to make big shape change and construct faster image-to-image translation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进无监督图像到图像翻译的学习时间
无监督的图像到图像转换可以在两个域之间映射局部纹理,但当域需要大的形状变化时,通常会失败。学习如何使用基本卷积层进行如此大的更改是很困难的,而且需要花费很多时间来学习。为了更快的学习和高质量的图像生成,我们建议在与残差块连接的网络中使用与Resnet相结合的Cycle GAN进行上采样,以进行大的形状变化并构建更快的图像到图像的转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Prices Prediction using the Title of Newspaper Articles with Korean Natural Language Processing Deep learning based decomposition of brain networks Simulation on Delay of Several Random Access Schemes A Machine-Learning-Based Channel Assignment Algorithm for IoT The Properties of mode prediction using mean root error for regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1