Adaptive parametric statistical background subtraction for video segmentation

P. Amnuaykanchanasin, T. Thongkamwitoon, N. Srisawaiwilai, S. Aramvith, T. Chalidabhongse
{"title":"Adaptive parametric statistical background subtraction for video segmentation","authors":"P. Amnuaykanchanasin, T. Thongkamwitoon, N. Srisawaiwilai, S. Aramvith, T. Chalidabhongse","doi":"10.1145/1099396.1099409","DOIUrl":null,"url":null,"abstract":"The Background Subtraction Algorithm has been proven to be a very effective technique for automated video surveillance applications. In statistical approach, background model is usually estimated using Gaussian model and is adaptively updated to deal with changes in dynamic scene environment. However, most algorithms update background parameters linearly. As a result, the classification results are erroneous when performing background convergence process. In this paper, we present a novel learning factor control for adaptive background subtraction algorithm. The method adaptively adjusts the rate of adaptation in background model corresponding to events in video sequence. Experimental results show the algorithm improves classification accuracy compared to other known methods.","PeriodicalId":196499,"journal":{"name":"Proceedings of the third ACM international workshop on Video surveillance & sensor networks","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the third ACM international workshop on Video surveillance & sensor networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1099396.1099409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The Background Subtraction Algorithm has been proven to be a very effective technique for automated video surveillance applications. In statistical approach, background model is usually estimated using Gaussian model and is adaptively updated to deal with changes in dynamic scene environment. However, most algorithms update background parameters linearly. As a result, the classification results are erroneous when performing background convergence process. In this paper, we present a novel learning factor control for adaptive background subtraction algorithm. The method adaptively adjusts the rate of adaptation in background model corresponding to events in video sequence. Experimental results show the algorithm improves classification accuracy compared to other known methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应参数统计背景减法视频分割
背景减法算法已被证明是一种非常有效的自动视频监控技术。在统计方法中,背景模型通常使用高斯模型估计,并自适应更新以应对动态场景环境的变化。然而,大多数算法线性地更新背景参数。因此,在进行背景收敛处理时,分类结果是错误的。本文提出了一种新的自适应背景减法算法的学习因子控制。该方法根据视频序列中的事件自适应调整背景模型的自适应速率。实验结果表明,与其他已知方法相比,该算法提高了分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards event detection in an audio-based sensor network Coopetitive visual surveillance using model predictive control Proceedings of the third ACM international workshop on Video surveillance & sensor networks Timeline-based information assimilation in multimedia surveillance and monitoring systems Automatic pan-tilt-zoom calibration in the presence of hybrid sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1