A robust variable step-size LMS-like algorithm for a second-order adaptive IIR notch filter for frequency detection

R. Punchalard, C. Benjangkaprasert, N. Anantrasirichai, K. Janchitrapongvej
{"title":"A robust variable step-size LMS-like algorithm for a second-order adaptive IIR notch filter for frequency detection","authors":"R. Punchalard, C. Benjangkaprasert, N. Anantrasirichai, K. Janchitrapongvej","doi":"10.1109/SPAWC.2001.923890","DOIUrl":null,"url":null,"abstract":"The best adaptive algorithm requires fast convergence speed, low variance, unbias and low steady-state mean square error (MSE) in both low and high signal-to-noise ratio (SNR) situations. We have proposed a robust variable step-size LMS-like algorithm (VS-LMS-L) for a second-order adaptive IIR notch filter for frequency detection in radar, sonar and communication systems. This algorithm is compared with the conventional LMS-like algorithm called the plain gradient algorithm (PG). The time-varying step-size /spl mu/(n) is adjusted by using the square of the time-averaged estimate of autocorrelation of the present output signal y(n) and the past one y(n-1). This technique can reject the effect of the uncorrelated noise sequence on the step-size update, resulting in a small MSE due to the small final /spl mu/(n). Moreover, this algorithm can also improve the convergence speed by comparison with the PG at the same MSE value.","PeriodicalId":435867,"journal":{"name":"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)","volume":"310 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2001.923890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The best adaptive algorithm requires fast convergence speed, low variance, unbias and low steady-state mean square error (MSE) in both low and high signal-to-noise ratio (SNR) situations. We have proposed a robust variable step-size LMS-like algorithm (VS-LMS-L) for a second-order adaptive IIR notch filter for frequency detection in radar, sonar and communication systems. This algorithm is compared with the conventional LMS-like algorithm called the plain gradient algorithm (PG). The time-varying step-size /spl mu/(n) is adjusted by using the square of the time-averaged estimate of autocorrelation of the present output signal y(n) and the past one y(n-1). This technique can reject the effect of the uncorrelated noise sequence on the step-size update, resulting in a small MSE due to the small final /spl mu/(n). Moreover, this algorithm can also improve the convergence speed by comparison with the PG at the same MSE value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于频率检测的二阶自适应IIR陷波滤波器的鲁棒变步长类lms算法
最好的自适应算法在低信噪比和高信噪比情况下都要求收敛速度快、方差小、无偏和稳态均方误差小。我们提出了一种鲁棒变步长类lms算法(VS-LMS-L),用于用于雷达、声纳和通信系统中频率检测的二阶自适应IIR陷波滤波器。将该算法与传统的类lms算法(plain gradient algorithm, PG)进行了比较。时变步长/spl mu/(n)通过使用当前输出信号y(n)和过去输出信号y(n-1)的自相关时间平均估计的平方来调整。该技术可以抑制不相关噪声序列对步长更新的影响,由于final /spl mu/(n)较小,导致MSE较小。此外,与相同MSE值下的PG相比,该算法还可以提高收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realistic channel model considerations in UMTS downlink capacity with space-time block coding Signal detection and timing estimation via summation likelihood ratio test ESPAR antennas-based signal processing for DS-CDMA signal waveforms in ad hoc network systems New results on blind asynchronous CDMA receivers using code-constrained CMA A flexible RAKE receiver architecture for WCDMA mobile terminals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1