Implementing a LoRa Software-Defined Radio on a General-Purpose ULP Microcontroller

Mathieu Xhonneux, J. Louveaux, D. Bol
{"title":"Implementing a LoRa Software-Defined Radio on a General-Purpose ULP Microcontroller","authors":"Mathieu Xhonneux, J. Louveaux, D. Bol","doi":"10.1109/SiPS52927.2021.00027","DOIUrl":null,"url":null,"abstract":"Emerging Internet-of-Things sensing applications rely on ultra low-power (ULP) microcontroller units (MCUs) that wirelessly transmit data to the cloud. Typical MCUs nowadays consist of generic blocks, except for the protocol-specific radios implemented in hardware. Hardware radios however slow down the evolution of wireless protocols due to retrocompatiblity concerns. In this work, we explore a software-defined radio architecture by demonstrating a LoRa transceiver running on custom ULP MCU codenamed SleepRider with an ARM Cortex-M4 CPU. In SleepRider MCU, we offload the generic baseband operations (e.g., low-pass filtering) to a reconfigurable digital front-end block and use the Cortex-M4 CPU to perform the protocol-specific computations. Our software implementation of the LoRa physical layer only uses the native SIMD instructions of the Cortex-M4 to achieve real-time transmission and reception of LoRa packets. SleepRider MCU has been fabricated in a 28nm FDSOI CMOS technology and is used in a testbed to experimentally validate the software implementation. Experimental results show that the proposed software-defined radio requires only a CPU frequency of 20 MHz to correctly receive a LoRa packet, with an ultra-low power consumption of 0.42 mW on average.","PeriodicalId":103894,"journal":{"name":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS52927.2021.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Emerging Internet-of-Things sensing applications rely on ultra low-power (ULP) microcontroller units (MCUs) that wirelessly transmit data to the cloud. Typical MCUs nowadays consist of generic blocks, except for the protocol-specific radios implemented in hardware. Hardware radios however slow down the evolution of wireless protocols due to retrocompatiblity concerns. In this work, we explore a software-defined radio architecture by demonstrating a LoRa transceiver running on custom ULP MCU codenamed SleepRider with an ARM Cortex-M4 CPU. In SleepRider MCU, we offload the generic baseband operations (e.g., low-pass filtering) to a reconfigurable digital front-end block and use the Cortex-M4 CPU to perform the protocol-specific computations. Our software implementation of the LoRa physical layer only uses the native SIMD instructions of the Cortex-M4 to achieve real-time transmission and reception of LoRa packets. SleepRider MCU has been fabricated in a 28nm FDSOI CMOS technology and is used in a testbed to experimentally validate the software implementation. Experimental results show that the proposed software-defined radio requires only a CPU frequency of 20 MHz to correctly receive a LoRa packet, with an ultra-low power consumption of 0.42 mW on average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在通用ULP微控制器上实现LoRa软件定义无线电
新兴的物联网传感应用依赖于超低功耗(ULP)微控制器单元(mcu),将数据无线传输到云端。除了在硬件中实现的特定于协议的无线电外,现在典型的mcu由通用块组成。然而,由于对向后兼容性的考虑,硬件无线电减慢了无线协议的发展。在这项工作中,我们通过展示一个运行在代号为SleepRider的定制ULP MCU上的LoRa收发器和ARM Cortex-M4 CPU,探索了一个软件定义的无线电架构。在SleepRider MCU中,我们将通用基带操作(例如,低通滤波)卸载到可重构的数字前端块上,并使用Cortex-M4 CPU执行特定协议的计算。我们的LoRa物理层的软件实现仅使用Cortex-M4的本机SIMD指令来实现LoRa数据包的实时传输和接收。SleepRider MCU采用28nm FDSOI CMOS技术制造,并在测试平台上实验验证了软件实现。实验结果表明,所提出的软件定义无线电仅需要20 MHz的CPU频率即可正确接收LoRa数据包,平均功耗为0.42 mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reconfigurable Neural Synaptic Plasticity-Based Stochastic Deep Neural Network Computing Efficient Mind-wandering Detection System with GSR Signals on MM-SART Database Time sliding window for the detection of CCSK frames Implementation of a Two-Dimensional FFT/IFFT Processor for Real-Time High-Resolution Synthetic Aperture Radar Imaging TernGEMM: GEneral Matrix Multiply Library with Ternary Weights for Fast DNN Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1