A Novel Low-rank and Sparse Decomposition Algorithm Based on Laplacian Distribution

Ruibo Fan, Mingli Jing, Tengfei Chen, Wanchun Liu
{"title":"A Novel Low-rank and Sparse Decomposition Algorithm Based on Laplacian Distribution","authors":"Ruibo Fan, Mingli Jing, Tengfei Chen, Wanchun Liu","doi":"10.1109/ICMSP55950.2022.9858949","DOIUrl":null,"url":null,"abstract":"The principal component pursuit (PCP) method has an excellent performance in foreground/background separation, but this method is also acknowledged to have some drawbacks: 1) the poor robustness; 2) the choice of balancing parameters is a tricky matter. To address these problems, we propose a new low-rank and sparse decomposition model based on the nuclear norm and Laplacian scale mixture. This model uses the Laplacian scale mixture to approximate the sparse term to improve the robustness of PCP and reduce the difficulty of adjusting parameters. Experimental results show that our approach is more effective than the PCP algorithm.","PeriodicalId":114259,"journal":{"name":"2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP)","volume":"409 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSP55950.2022.9858949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The principal component pursuit (PCP) method has an excellent performance in foreground/background separation, but this method is also acknowledged to have some drawbacks: 1) the poor robustness; 2) the choice of balancing parameters is a tricky matter. To address these problems, we propose a new low-rank and sparse decomposition model based on the nuclear norm and Laplacian scale mixture. This model uses the Laplacian scale mixture to approximate the sparse term to improve the robustness of PCP and reduce the difficulty of adjusting parameters. Experimental results show that our approach is more effective than the PCP algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的基于拉普拉斯分布的低秩稀疏分解算法
主成分追踪(PCP)方法在前景/背景分离中具有优异的性能,但该方法也存在一些缺点:1)鲁棒性差;2)平衡参数的选择是一个棘手的问题。为了解决这些问题,我们提出了一种新的基于核范数和拉普拉斯尺度混合的低秩稀疏分解模型。该模型采用拉普拉斯混合尺度近似稀疏项,提高了PCP的鲁棒性,降低了参数调整的难度。实验结果表明,该方法比PCP算法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research and Circuit Design of Dynamic Path Accumulation CMOS Image Sensor An Improved Slap Swarm Algorithm Incorporating Tent Chaotic Mapping and Decay Factor Monitoring method for abrasive jet cutting depth of casing pipes Numerical Simulation Research on Dual-frequency Processing of Oil-based Mud Electrical Imaging Logging Development of an environmentally friendly electricity monitoring platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1