Visualizing extracted feature by deep learning in P300 discrimination task

Koki Kawasaki, T. Yoshikawa, T. Furuhashi
{"title":"Visualizing extracted feature by deep learning in P300 discrimination task","authors":"Koki Kawasaki, T. Yoshikawa, T. Furuhashi","doi":"10.1109/SOCPAR.2015.7492799","DOIUrl":null,"url":null,"abstract":"P300 speller is a system that allows users to input words using electroencephalogram (EEG). A component called P300 is used to interpret the EEG in P300 speller. In order to make a high performance P300 speller, it is essential to discriminate P300 from nonP300 precisely and automatically. In this study, deep learning (DL) is used to discriminate P300. The experimental result shows that DL was possible to discriminate P300 in EEG data, especially in the higher level layer. Furthermore, this study refers to the extracted feature by DL. We can see that DL learns feature from the waveforms correctly to discriminate P300 from others.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"380 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

P300 speller is a system that allows users to input words using electroencephalogram (EEG). A component called P300 is used to interpret the EEG in P300 speller. In order to make a high performance P300 speller, it is essential to discriminate P300 from nonP300 precisely and automatically. In this study, deep learning (DL) is used to discriminate P300. The experimental result shows that DL was possible to discriminate P300 in EEG data, especially in the higher level layer. Furthermore, this study refers to the extracted feature by DL. We can see that DL learns feature from the waveforms correctly to discriminate P300 from others.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P300识别任务中深度学习提取特征的可视化
P300拼写器是通过脑电图(EEG)输入单词的系统。一个名为P300的组件用于在P300拼写器中解释EEG。为了制造高性能的P300拼写器,P300与非P300的精确自动区分是至关重要的。在本研究中,使用深度学习(DL)来区分P300。实验结果表明,深度学习能够有效地识别出脑电数据中的P300,特别是在较高的层次上。此外,本研究引用了DL提取的特征。我们可以看到DL正确地从波形中学习特征来区分P300和其他P300。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An effective AIS-based model for frequency assignment in mobile communication An innovative approach for feature selection based on chicken swarm optimization Vertical collaborative clustering using generative topographic maps Solving the obstacle neutralization problem using swarm intelligence algorithms Optimal partial filters of EEG signals for shared control of vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1