Ontology-driven Intelligent IT Incident Management Model

Bisrat Betru, Fekade Getahun
{"title":"Ontology-driven Intelligent IT Incident Management Model","authors":"Bisrat Betru, Fekade Getahun","doi":"10.5815/ijitcs.2023.01.04","DOIUrl":null,"url":null,"abstract":"A significant number of Information Technology incidents are reported through email. To design and implement an intelligent incident management system, it is significant to automatically classify the reported incident to a given incident category. This requires the extraction of semantic content from the reported email text. In this research work, we have attempted to classify a reported incident to a given category based on its semantic content using ontology. We have developed an Incident Ontology that can serve as a knowledge base for the incident management system. We have also developed an automatic incident classifier that matches the semantical units of the incident report with concepts in the incident ontology. According to our evaluation, ontology-driven incident classification facilitates the process of Information Technology incident management in a better way since the model shows 100% recall, 66% precision, and 79% F1-Score for sample incident reports.","PeriodicalId":130361,"journal":{"name":"International Journal of Information Technology and Computer Science","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijitcs.2023.01.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A significant number of Information Technology incidents are reported through email. To design and implement an intelligent incident management system, it is significant to automatically classify the reported incident to a given incident category. This requires the extraction of semantic content from the reported email text. In this research work, we have attempted to classify a reported incident to a given category based on its semantic content using ontology. We have developed an Incident Ontology that can serve as a knowledge base for the incident management system. We have also developed an automatic incident classifier that matches the semantical units of the incident report with concepts in the incident ontology. According to our evaluation, ontology-driven incident classification facilitates the process of Information Technology incident management in a better way since the model shows 100% recall, 66% precision, and 79% F1-Score for sample incident reports.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本体驱动的智能IT事件管理模型
相当数量的资讯科技事故是透过电子邮件报告的。为了设计和实现智能事件管理系统,将报告的事件自动分类到给定的事件类别是非常重要的。这需要从报告的电子邮件文本中提取语义内容。在这项研究工作中,我们尝试使用本体将报告的事件根据其语义内容分类到给定的类别。我们已经开发了一个事件本体,它可以作为事件管理系统的知识库。我们还开发了一个自动事件分类器,它将事件报告的语义单元与事件本体中的概念相匹配。根据我们的评估,本体驱动的事件分类以更好的方式促进了信息技术事件管理过程,因为该模型显示了100%的召回率,66%的准确率和79%的样本事件报告F1-Score。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Healthcare Provision in Conflict Zones: Queuing System Models for Mobile and Flexible Medical Care Units with a Limited Number of Treatment Stations A Machine Learning Based Intelligent Diabetic and Hypertensive Patient Prediction Scheme and A Mobile Application for Patients Assistance Mimicking Nature: Analysis of Dragonfly Pursuit Strategies Using LSTM and Kalman Filter Securing the Internet of Things: Evaluating Machine Learning Algorithms for Detecting IoT Cyberattacks Using CIC-IoT2023 Dataset Analyzing Test Performance of BSIT Students and Question Quality: A Study on Item Difficulty Index and Item Discrimination Index for Test Question Improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1