Stack-Based Genetic Improvement

Aymeric Blot, J. Petke
{"title":"Stack-Based Genetic Improvement","authors":"Aymeric Blot, J. Petke","doi":"10.1145/3387940.3392174","DOIUrl":null,"url":null,"abstract":"Genetic improvement (GI) uses automated search to find improved versions of existing software. If originally GI directly evolved populations of software, most GI work nowadays use a solution representation based on a list of mutations. This representation however has some limitations, notably in how genetic material can be re-combined. We introduce a novel stack-based representation and discuss its possible benefits.","PeriodicalId":309659,"journal":{"name":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","volume":"357 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387940.3392174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Genetic improvement (GI) uses automated search to find improved versions of existing software. If originally GI directly evolved populations of software, most GI work nowadays use a solution representation based on a list of mutations. This representation however has some limitations, notably in how genetic material can be re-combined. We introduce a novel stack-based representation and discuss its possible benefits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于堆栈的遗传改良
遗传改进(GI)使用自动搜索来查找现有软件的改进版本。如果最初GI是直接进化软件种群,那么现在大多数GI工作使用基于突变列表的解决方案表示。然而,这种表示有一些局限性,特别是在遗传物质如何重新组合方面。我们介绍了一种新的基于堆栈的表示,并讨论了它可能带来的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Preliminary Systematic Mapping on Software Engineering for Robotic Systems: A Software Quality Perspective Generating API Test Data Using Deep Reinforcement Learning Human Factors in the Study of Automatic Software Repair: Future Directions for Research with Industry Strategies for Crowdworkers to Overcome Barriers in Competition-based Software Crowdsourcing Development Centralized Generic Interfaces in Hardware/Software Co-design for AI Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1