Multi-population Runge Kutta Optimizer Based on Gaussian Disturbance

Jinhan Chen, Yitong Song, Jixiang Zhu, Sheng-Kai Wang
{"title":"Multi-population Runge Kutta Optimizer Based on Gaussian Disturbance","authors":"Jinhan Chen, Yitong Song, Jixiang Zhu, Sheng-Kai Wang","doi":"10.1145/3609703.3609713","DOIUrl":null,"url":null,"abstract":"To address the lack of development capacity of Runge Kutta Optimizer, we propose the Multi-population Runge Kutta algorithm Based on Gaussian disturbance(MPRUN). In the algorithm, the population is divided into subgroups. The individuals in the subgroups are randomly selected for a global search with decreasing search radius with the number of iterations, which is used to improve the global search ability of the subgroups. In addition, the algorithm introduces a Gaussian disturbance mechanism to generate more uniformly distributed populations, performing random perturbation to the global best individual. Finally, the performance of the optimized algorithm is verified by 30 test set functions.","PeriodicalId":101485,"journal":{"name":"Proceedings of the 2023 5th International Conference on Pattern Recognition and Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 5th International Conference on Pattern Recognition and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609703.3609713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To address the lack of development capacity of Runge Kutta Optimizer, we propose the Multi-population Runge Kutta algorithm Based on Gaussian disturbance(MPRUN). In the algorithm, the population is divided into subgroups. The individuals in the subgroups are randomly selected for a global search with decreasing search radius with the number of iterations, which is used to improve the global search ability of the subgroups. In addition, the algorithm introduces a Gaussian disturbance mechanism to generate more uniformly distributed populations, performing random perturbation to the global best individual. Finally, the performance of the optimized algorithm is verified by 30 test set functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高斯扰动的多种群Runge Kutta优化器
针对龙格库塔优化器开发能力不足的问题,提出了基于高斯扰动的多种群龙格库塔算法(MPRUN)。在该算法中,总体被划分为子组。随机选取子组中的个体进行全局搜索,搜索半径随着迭代次数的增加而减小,从而提高子组的全局搜索能力。此外,该算法引入高斯扰动机制生成更均匀分布的总体,对全局最优个体进行随机扰动。最后,通过30个测试集函数验证了优化算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification-Dissemination-Warning: Algorithm and Prediction of Early Warning of Network Public Opinion Exploration of transfer learning capability of multilingual models for text classification Reconstructing 3D Shapes as an Union of Boxes from Multi-View Images LLFormer: An Efficient and Real-time LiDAR Lane Detection Method based on Transformer Survey of the Formal Verification of Operating Systems in Power Monitoring System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1