A loop accelerator for low power embedded VLIW processors

B. Mathew, A. Davis
{"title":"A loop accelerator for low power embedded VLIW processors","authors":"B. Mathew, A. Davis","doi":"10.1109/CODES+ISSS.2004.1","DOIUrl":null,"url":null,"abstract":"The high transistor density afforded by modern VLSI processes has enabled the design of embedded processors that use clustered execution units to deliver high levels of performance. However, delivering data to the execution resources in a timely manner remains a major problem that limits ILP. It is particularly significant for embedded systems where memory and power budgets are limited. A distributed address generation and loop acceleration architecture for VLIW processors is presented. This decentralized on-chip memory architecture uses multiple SRAMs to provide high intra-processor bandwidth. Each SRAM has an associated stream address generator capable of implementing a variety of addressing modes in conjunction with a shared loop accelerator. The architecture is extremely useful for generating application specific embedded processors, particularly for processing input data which is organized as a stream. The idea is evaluated in the context of a fine grain VLIW architecture executing complex perception algorithms such as speech and visual feature recognition. Transistor level Spice simulations are used to demonstrate a 159x improvement in the energy delay product when compared to conventional architectures executing the same applications.","PeriodicalId":127038,"journal":{"name":"International Conference on Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODES+ISSS.2004.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The high transistor density afforded by modern VLSI processes has enabled the design of embedded processors that use clustered execution units to deliver high levels of performance. However, delivering data to the execution resources in a timely manner remains a major problem that limits ILP. It is particularly significant for embedded systems where memory and power budgets are limited. A distributed address generation and loop acceleration architecture for VLIW processors is presented. This decentralized on-chip memory architecture uses multiple SRAMs to provide high intra-processor bandwidth. Each SRAM has an associated stream address generator capable of implementing a variety of addressing modes in conjunction with a shared loop accelerator. The architecture is extremely useful for generating application specific embedded processors, particularly for processing input data which is organized as a stream. The idea is evaluated in the context of a fine grain VLIW architecture executing complex perception algorithms such as speech and visual feature recognition. Transistor level Spice simulations are used to demonstrate a 159x improvement in the energy delay product when compared to conventional architectures executing the same applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低功耗嵌入式VLIW处理器的环路加速器
现代VLSI工艺所提供的高晶体管密度使得使用集群执行单元的嵌入式处理器的设计能够提供高水平的性能。然而,及时地向执行资源交付数据仍然是限制ILP的主要问题。这对于内存和功耗预算有限的嵌入式系统尤其重要。提出了一种用于VLIW处理器的分布式地址生成和循环加速体系结构。这种分散的片上存储器架构使用多个sram来提供高处理器内带宽。每个SRAM都有一个相关联的流地址生成器,能够与共享环路加速器一起实现各种寻址模式。该体系结构对于生成特定于应用程序的嵌入式处理器非常有用,特别是对于处理作为流组织的输入数据。该想法在执行复杂感知算法(如语音和视觉特征识别)的细粒度VLIW架构的背景下进行了评估。晶体管级Spice模拟用于证明与执行相同应用的传统架构相比,能量延迟产品提高了159倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient mapping of hierarchical trees on coarse-grain reconfigurable architectures Analytical models for leakage power estimation of memory array structures Memory accesses management during high level synthesis A novel deadlock avoidance algorithm and its hardware implementation Fast exploration of bus-based on-chip communication architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1