Synchronization Schemas

R. Alur, Phillip Hilliard, Z. Ives, Konstantinos Kallas, Konstantinos Mamouras, Filip Niksic, C. Stanford, V. Tannen, Anton Xue
{"title":"Synchronization Schemas","authors":"R. Alur, Phillip Hilliard, Z. Ives, Konstantinos Kallas, Konstantinos Mamouras, Filip Niksic, C. Stanford, V. Tannen, Anton Xue","doi":"10.1145/3452021.3458317","DOIUrl":null,"url":null,"abstract":"We present a type-theoretic framework for data stream processing for real-time decision making, where the desired computation involves a mix of sequential computation, such as smoothing and detection of peaks and surges, and naturally parallel computation, such as relational operations, key-based partitioning, and map-reduce. Our framework unifies sequential (ordered) and relational (unordered) data models. In particular, we define synchronization schemas as types, and series-parallel streams (SPS) as objects of these types. A synchronization schema imposes a hierarchical structure over relational types that succinctly captures ordering and synchronization requirements among different kinds of data items. Series-parallel streams naturally model objects such as relations, sequences, sequences of relations, sets of streams indexed by key values, time-based and event-based windows, and more complex structures obtained by nesting of these. We introduce series-parallel stream transformers (SPST) as a domain-specific language for modular specification of deterministic transformations over such streams. SPSTs provably specify only monotonic transformations allowing streamability, have a modular structure that can be exploited for correct parallel implementation, and are composable allowing specification of complex queries as a pipeline of transformations.","PeriodicalId":405398,"journal":{"name":"Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452021.3458317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a type-theoretic framework for data stream processing for real-time decision making, where the desired computation involves a mix of sequential computation, such as smoothing and detection of peaks and surges, and naturally parallel computation, such as relational operations, key-based partitioning, and map-reduce. Our framework unifies sequential (ordered) and relational (unordered) data models. In particular, we define synchronization schemas as types, and series-parallel streams (SPS) as objects of these types. A synchronization schema imposes a hierarchical structure over relational types that succinctly captures ordering and synchronization requirements among different kinds of data items. Series-parallel streams naturally model objects such as relations, sequences, sequences of relations, sets of streams indexed by key values, time-based and event-based windows, and more complex structures obtained by nesting of these. We introduce series-parallel stream transformers (SPST) as a domain-specific language for modular specification of deterministic transformations over such streams. SPSTs provably specify only monotonic transformations allowing streamability, have a modular structure that can be exploited for correct parallel implementation, and are composable allowing specification of complex queries as a pipeline of transformations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同步模式
我们提出了一个用于实时决策的数据流处理的类型理论框架,其中所需的计算涉及顺序计算的混合,例如平滑和检测峰值和激增,以及自然并行计算,例如关系操作,基于键的分区和映射约简。我们的框架统一了顺序(有序)和关系(无序)数据模型。特别是,我们将同步模式定义为类型,并将串行并行流(SPS)定义为这些类型的对象。同步模式在关系类型上施加层次结构,这种结构可以简洁地捕获不同类型数据项之间的排序和同步需求。串行并行流自然地建模对象,如关系、序列、关系序列、按键值索引的流集、基于时间和基于事件的窗口,以及通过这些嵌套获得的更复杂的结构。我们引入串并联流转换器(SPST)作为特定于领域的语言,用于此类流上的确定性转换的模块化规范。可以证明,spst只指定允许流化的单调转换,具有可用于正确并行实现的模块化结构,并且是可组合的,允许将复杂查询指定为转换管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cover or Pack: New Upper and Lower Bounds for Massively Parallel Joins Data-Independent Space Partitionings for Summaries 2021 ACM PODS Alberto O. Mendelzon Test-of-Time Award Modern Lower Bound Techniques in Database Theory and Constraint Satisfaction Privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1