Wireless Sensor Network Based Greenhouse Monitoring Using Cloud Integration with Data Analytics

M. Praveena, A. Babiyola, S. Aghalya, A. Sasikar
{"title":"Wireless Sensor Network Based Greenhouse Monitoring Using Cloud Integration with Data Analytics","authors":"M. Praveena, A. Babiyola, S. Aghalya, A. Sasikar","doi":"10.1109/ICECAA58104.2023.10212251","DOIUrl":null,"url":null,"abstract":"This research work describes a Wireless Sensor Network (WSN) for monitoring different conditions of a greenhouse. Plant development requires careful temperature and humidity management in greenhouses. Manual monitoring is time-consuming and error-prone. The proposed WSN solves these issues. Each sensor node in the greenhouse has a microprocessor, wireless connection module, and temperature and humidity sensors. Nodes deliberately positioned to gather data from different areas provide a complete greenhouse perspective. A central base station aggregates and visualizes data from sensor nodes through wireless communication. Sensor nodes use strong communication protocols and data aggregation methods for accurate, real-time monitoring. Zigbee or Bluetooth low-power wireless communication protocols are used to send data to the base station to save energy and prolong network lifespan. The base station stores, processes, and analyzes data. Data is shown and analyzed using a simple interface. A web-based or mobile app allows remote greenhouse monitoring and control. Users get real-time warnings of important temperature or humidity variations to take immediate action. WSN greenhouse monitoring outperforms manual approaches. It monitors greenhouse temperature and humidity in real-time, allowing precise control and changes for ideal growing conditions. Wireless connections provide node placement freedom and lower installation costs. The WSN for greenhouse monitoring is a dependable and effective agricultural solution. It boosts productivity, lowers personnel costs, and allows real-time data-driven decision-making. This research advances precision agriculture and shows WSNs can improve greenhouse management and crop production.","PeriodicalId":114624,"journal":{"name":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAA58104.2023.10212251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research work describes a Wireless Sensor Network (WSN) for monitoring different conditions of a greenhouse. Plant development requires careful temperature and humidity management in greenhouses. Manual monitoring is time-consuming and error-prone. The proposed WSN solves these issues. Each sensor node in the greenhouse has a microprocessor, wireless connection module, and temperature and humidity sensors. Nodes deliberately positioned to gather data from different areas provide a complete greenhouse perspective. A central base station aggregates and visualizes data from sensor nodes through wireless communication. Sensor nodes use strong communication protocols and data aggregation methods for accurate, real-time monitoring. Zigbee or Bluetooth low-power wireless communication protocols are used to send data to the base station to save energy and prolong network lifespan. The base station stores, processes, and analyzes data. Data is shown and analyzed using a simple interface. A web-based or mobile app allows remote greenhouse monitoring and control. Users get real-time warnings of important temperature or humidity variations to take immediate action. WSN greenhouse monitoring outperforms manual approaches. It monitors greenhouse temperature and humidity in real-time, allowing precise control and changes for ideal growing conditions. Wireless connections provide node placement freedom and lower installation costs. The WSN for greenhouse monitoring is a dependable and effective agricultural solution. It boosts productivity, lowers personnel costs, and allows real-time data-driven decision-making. This research advances precision agriculture and shows WSNs can improve greenhouse management and crop production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无线传感器网络的温室监测,使用云集成和数据分析
本研究工作描述了一种用于监测温室不同条件的无线传感器网络(WSN)。在温室中,植物的生长需要对温度和湿度进行细致的管理。手动监控既耗时又容易出错。提出的无线传感器网络解决了这些问题。温室里的每个传感器节点都有一个微处理器、无线连接模块、温度和湿度传感器。从不同区域收集数据的节点提供了一个完整的温室视角。中央基站通过无线通信聚合和可视化来自传感器节点的数据。传感器节点使用强大的通信协议和数据聚合方法进行准确、实时的监控。采用Zigbee或蓝牙低功耗无线通信协议向基站发送数据,节省能源,延长网络寿命。基站存储、处理和分析数据。数据显示和分析使用一个简单的界面。一个基于网络或移动的应用程序允许对温室进行远程监控。用户可以获得重要的温度或湿度变化的实时警告,以便立即采取行动。无线传感器网络温室监测优于人工方法。它实时监测温室温度和湿度,允许精确控制和改变理想的生长条件。无线连接提供了节点放置的自由度和更低的安装成本。无线传感器网络用于温室监测是一种可靠、有效的农业解决方案。它提高了生产力,降低了人员成本,并允许实时数据驱动的决策。这项研究促进了精准农业的发展,表明无线传感器网络可以改善温室管理和作物生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning based Sentiment Analysis on Images A Comprehensive Analysis on Unconstraint Video Analysis Using Deep Learning Approaches An Intelligent Parking Lot Management System Based on Real-Time License Plate Recognition BLIP-NLP Model for Sentiment Analysis Botnet Attack Detection in IoT Networks using CNN and LSTM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1