{"title":"Estimating Breaker Status with Electrical State Images and Convolutional Neural Networks","authors":"Vladimiro Miranda, Luís Teixeira, J. Pereira","doi":"10.1109/ISAP48318.2019.9065958","DOIUrl":null,"url":null,"abstract":"This paper presents a method to identify the status (open or closed) of breakers in network branches, in the absence of status signal or electric measurements on the branch including the breaker. Indirect power measurements from the SCADA are combined to form a 2D image array, which is fed into a Convolutional Neural Network. The image construction is based on ranking measurements with the Cauchy-Schwarz divergence between two signal distributions (for breaker open and closed). The success rate obtained with this technique is close to 100% in the IEEE testbed adopted.","PeriodicalId":316020,"journal":{"name":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP48318.2019.9065958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a method to identify the status (open or closed) of breakers in network branches, in the absence of status signal or electric measurements on the branch including the breaker. Indirect power measurements from the SCADA are combined to form a 2D image array, which is fed into a Convolutional Neural Network. The image construction is based on ranking measurements with the Cauchy-Schwarz divergence between two signal distributions (for breaker open and closed). The success rate obtained with this technique is close to 100% in the IEEE testbed adopted.