Ideality Factor Based Computational Analysis of Perovskite Solar Cells

Maniell Workman, D. Z. Chen, S. Musa
{"title":"Ideality Factor Based Computational Analysis of Perovskite Solar Cells","authors":"Maniell Workman, D. Z. Chen, S. Musa","doi":"10.1109/SusTech51236.2021.9467471","DOIUrl":null,"url":null,"abstract":"Photovoltaic semiconductors are diodes which produce a current when exposed to light. The ideality factor is a parameter which tells how closely a semiconductor behaves to an ideal diode. In an ideal diode, the only mechanism for hole electron recombination is direct bimolecular recombination. Because there are multiple mechanisms of recombination, there are no real devices with a perfect ideality factor. The types of recombination occurring within a device can be inferred by its ideality factor. In this work, we examine the ideality factor of perovskite solar cells to identify possible recombination mechanisms in the device. Analyzing fabricated perovskite solar cells using their ideality factor can indicate which type of recombination is dominant in the device. The interaction between the perovskite crystal and transport layers is of high interest as differentials in energy band can hinder overall power conversion efficiency and act as a site for nonradiative recombination loss. We show that measuring the ideality factor of high performing cells and correlating the recombination mechanisms inferred can positively drive the electrochemistry of fabricating these devices. Thereby driving researchers to maximize or minimize types of recombination for optimization.","PeriodicalId":127126,"journal":{"name":"2021 IEEE Conference on Technologies for Sustainability (SusTech)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Technologies for Sustainability (SusTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SusTech51236.2021.9467471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Photovoltaic semiconductors are diodes which produce a current when exposed to light. The ideality factor is a parameter which tells how closely a semiconductor behaves to an ideal diode. In an ideal diode, the only mechanism for hole electron recombination is direct bimolecular recombination. Because there are multiple mechanisms of recombination, there are no real devices with a perfect ideality factor. The types of recombination occurring within a device can be inferred by its ideality factor. In this work, we examine the ideality factor of perovskite solar cells to identify possible recombination mechanisms in the device. Analyzing fabricated perovskite solar cells using their ideality factor can indicate which type of recombination is dominant in the device. The interaction between the perovskite crystal and transport layers is of high interest as differentials in energy band can hinder overall power conversion efficiency and act as a site for nonradiative recombination loss. We show that measuring the ideality factor of high performing cells and correlating the recombination mechanisms inferred can positively drive the electrochemistry of fabricating these devices. Thereby driving researchers to maximize or minimize types of recombination for optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于理想因子的钙钛矿太阳能电池计算分析
光伏半导体是当暴露在光下时产生电流的二极管。理想因数是一个参数,它表示半导体的性能与理想二极管的性能有多接近。在理想的二极管中,空穴电子复合的唯一机制是直接的双分子复合。由于存在多种重组机制,因此不存在具有完美理想因子的真实装置。在器件内发生的重组类型可以通过其理想因子来推断。在这项工作中,我们研究了钙钛矿太阳能电池的理想因子,以确定器件中可能的重组机制。利用理想因子分析制备的钙钛矿太阳能电池可以指出哪种类型的重组在器件中占主导地位。钙钛矿晶体和输运层之间的相互作用引起了人们的高度关注,因为能带的差异会阻碍整体功率转换效率,并成为非辐射复合损失的一个场所。我们表明,测量高性能电池的理想因子并将推断的重组机制关联起来,可以积极地推动制造这些器件的电化学。从而推动研究人员最大化或最小化类型的优化重组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Welcome Message from the Conference Chair Molten Salt Based Nanofluids for Solar Thermal Power Plant: A Case Study Sparking Energy Mindset at Home with the Create a Spark Energy House Challenge High-Endurance UAV Via Parasitic Weight Minimization and Wireless Energy Harvesting AI Legitimacy for Sustainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1