Feng Liu, Changgu Chen, Zhihua Li, Z. Guan, Hua O. Wang
{"title":"Research on path planning of robot based on deep reinforcement learning","authors":"Feng Liu, Changgu Chen, Zhihua Li, Z. Guan, Hua O. Wang","doi":"10.23919/CCC50068.2020.9188890","DOIUrl":null,"url":null,"abstract":"In this paper, to avoid the problem of local optimization and slow convergence in complex environment, a reinforcement learning algorithm is proposed to solve the problem. A robot path planning model is built and its feasibility is verified by simulation. In addition, this paper proposes a deep environment to neural network for robot camera to establish a deep reinforcement learning path planning model, and establishes a deep recursive Q-network (DRQN) and Deep Dueling Q-network(DDQN) respectively. In the comparison of the final simulation results, DRQN needs to consume more computation time, but can achieve better results with higher accuracy.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"37 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9188890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, to avoid the problem of local optimization and slow convergence in complex environment, a reinforcement learning algorithm is proposed to solve the problem. A robot path planning model is built and its feasibility is verified by simulation. In addition, this paper proposes a deep environment to neural network for robot camera to establish a deep reinforcement learning path planning model, and establishes a deep recursive Q-network (DRQN) and Deep Dueling Q-network(DDQN) respectively. In the comparison of the final simulation results, DRQN needs to consume more computation time, but can achieve better results with higher accuracy.