Design Optimization of an Outer Rotor PMSM for Electrical fixed-wing UAV Application Considering the Torque/RPM Working Cycle

Ryad Sadou, N. Bernard, F. Auger, Denis Pitance
{"title":"Design Optimization of an Outer Rotor PMSM for Electrical fixed-wing UAV Application Considering the Torque/RPM Working Cycle","authors":"Ryad Sadou, N. Bernard, F. Auger, Denis Pitance","doi":"10.1109/IEMDC47953.2021.9449516","DOIUrl":null,"url":null,"abstract":"In this paper, a novel methodology for the design optimization of permanent magnet synchronous machines (PMSM) is presented. It is applied to an outer rotor machine for an unmanned aerial vehicle (UAV). The study shows how, considering all points (up to several thousands) of a working cycle torque/RPM, it is possible to optimize both geometry and control strategy, with the objective of weight and losses minimization while keeping a reduced computational time. With this kind of applications, the working points can have a big variation, which requires a specific method to avoid oversizing and to control multiple constraints in the same time. Hence, the temporal thermal variation is calculated, taking into account the transient. The magnetic saturation, geometrical and electrical constraints are also considered along the working cycle. The electromagnetic model is presented and validated by finite element analysis (FEA).","PeriodicalId":106489,"journal":{"name":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC47953.2021.9449516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a novel methodology for the design optimization of permanent magnet synchronous machines (PMSM) is presented. It is applied to an outer rotor machine for an unmanned aerial vehicle (UAV). The study shows how, considering all points (up to several thousands) of a working cycle torque/RPM, it is possible to optimize both geometry and control strategy, with the objective of weight and losses minimization while keeping a reduced computational time. With this kind of applications, the working points can have a big variation, which requires a specific method to avoid oversizing and to control multiple constraints in the same time. Hence, the temporal thermal variation is calculated, taking into account the transient. The magnetic saturation, geometrical and electrical constraints are also considered along the working cycle. The electromagnetic model is presented and validated by finite element analysis (FEA).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑转矩/转数工作循环的电动固定翼无人机外转子永磁同步电机设计优化
本文提出了一种新的永磁同步电机优化设计方法。应用于无人机外旋翼机。该研究表明,考虑到工作周期扭矩/RPM的所有点(最多数千个),如何优化几何形状和控制策略,以最小化重量和损失为目标,同时减少计算时间。在这类应用中,工作点可能会有很大的变化,这就需要一个特定的方法来避免过大,同时控制多个约束。因此,计算了考虑瞬态的时间热变化。同时考虑了沿工作周期的磁饱和、几何和电约束。建立了电磁模型,并通过有限元分析进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel Liquid Cooling Technology for Modular Consequent-Pole PM Machines Static Eccentricity Fault Detection for PSH-type Induction Motors Considering High-order Air Gap Permeance Harmonics Improving the Thermal Conductivity of Form-Wound Litz-Wire Windings for Slot-less Machines Design and Experimental Analysis of a Selfbearing Double-Stator Linear-Rotary Actuator Analysis of electric motor alternatives for Primary Flight Surface Actuators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1