Crossing the KS threshold in the stochastic block model with information theory

E. Abbe, Colin Sandon
{"title":"Crossing the KS threshold in the stochastic block model with information theory","authors":"E. Abbe, Colin Sandon","doi":"10.1109/ISIT.2016.7541417","DOIUrl":null,"url":null,"abstract":"Decelle et al. conjectured that community detection in the symmetric stochastic block model has a computational threshold given by the so-called Kesten-Stigum (KS) threshold, and that information-theoretic methods can cross this threshold for a large enough number of communities (4 or 5 depending on the regime of the parameters). This paper shows that at k = 5, it is possible to cross the KS threshold in the disassortative regime with a non-efficient algorithm that samples a clustering having typical cluster volumes. Further, the gap between the KS and information-theoretic threshold is shown to be large in some cases. In the case where edges are drawn only across clusters with an average degree of b, and denoting by k the number of communities, the KS threshold reads b ≳ k2 whereas our information-theoretic bound reads b ≳ k ln(k).","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Decelle et al. conjectured that community detection in the symmetric stochastic block model has a computational threshold given by the so-called Kesten-Stigum (KS) threshold, and that information-theoretic methods can cross this threshold for a large enough number of communities (4 or 5 depending on the regime of the parameters). This paper shows that at k = 5, it is possible to cross the KS threshold in the disassortative regime with a non-efficient algorithm that samples a clustering having typical cluster volumes. Further, the gap between the KS and information-theoretic threshold is shown to be large in some cases. In the case where edges are drawn only across clusters with an average degree of b, and denoting by k the number of communities, the KS threshold reads b ≳ k2 whereas our information-theoretic bound reads b ≳ k ln(k).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息论的随机块模型中KS阈值的跨越
Decelle等人推测,对称随机块模型中的社区检测具有一个计算阈值,即所谓的Kesten-Stigum (KS)阈值,并且信息论方法可以在足够多的社区(4或5取决于参数的制度)中超过该阈值。本文表明,在k = 5时,可以使用非高效算法对具有典型聚类体积的聚类进行采样,从而在非分类状态下跨越KS阈值。此外,在某些情况下,KS和信息理论阈值之间的差距很大。在这种情况下,仅在平均度为b的簇上绘制边,并用k表示群落的数量,KS阈值读取b约k2,而我们的信息论边界读取b约k ln(k)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
String concatenation construction for Chebyshev permutation channel codes Cyclically symmetric entropy inequalities Near-capacity protograph doubly-generalized LDPC codes with block thresholds On the capacity of a class of dual-band interference channels Distributed detection over connected networks via one-bit quantizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1