Automatic Quality Assessment of Documents with Application to Essay Grading

Niraj Kumar, Lipika Dey
{"title":"Automatic Quality Assessment of Documents with Application to Essay Grading","authors":"Niraj Kumar, Lipika Dey","doi":"10.1109/MICAI.2013.34","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on automatic quality assessment for intelligent essay grading. Our devised system grades essays without depending upon completely overlapping essays in training data. This increases the scope of devised system due to list dependency on highly topic focused labeled data for automatic essay grading. Instead of depending upon direct topic specific matching w.r.t., training data, the devised system judge the quality of essay by exploiting knowledgebase documents and SentiWordNet, etc. To achieve this goal, we concentrate on five different features: (1) relevance of information, (2) presence of sparsely connected words, (3) statistical and semantic role of words, (4) presence of talkative terms and (5) length of essay. We extract all these features by using word graph of text, populated with statistical, semantic and topical relation between words. Next, we use graph theoretical techniques, like: weighted all pair shortest paths, Ego-Networks, entropy based measures for effectiveness of nodes in weighted graph and statistical and probabilistic techniques like: total correlation score and Point wise Mutual Information (PMI) etc. Our experimental result on standard dataset shows that our devised system performs better than state-of-the-Art systems of this area.","PeriodicalId":340039,"journal":{"name":"2013 12th Mexican International Conference on Artificial Intelligence","volume":"351 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2013.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we focus on automatic quality assessment for intelligent essay grading. Our devised system grades essays without depending upon completely overlapping essays in training data. This increases the scope of devised system due to list dependency on highly topic focused labeled data for automatic essay grading. Instead of depending upon direct topic specific matching w.r.t., training data, the devised system judge the quality of essay by exploiting knowledgebase documents and SentiWordNet, etc. To achieve this goal, we concentrate on five different features: (1) relevance of information, (2) presence of sparsely connected words, (3) statistical and semantic role of words, (4) presence of talkative terms and (5) length of essay. We extract all these features by using word graph of text, populated with statistical, semantic and topical relation between words. Next, we use graph theoretical techniques, like: weighted all pair shortest paths, Ego-Networks, entropy based measures for effectiveness of nodes in weighted graph and statistical and probabilistic techniques like: total correlation score and Point wise Mutual Information (PMI) etc. Our experimental result on standard dataset shows that our devised system performs better than state-of-the-Art systems of this area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动质量评估文件与应用论文评分
在本文中,我们关注的是智能作文评分的自动质量评估。我们设计的系统对文章进行评分,而不依赖于训练数据中完全重叠的文章。这增加了设计系统的范围,因为列表依赖于高度关注主题的标记数据,用于自动作文评分。设计的系统不是依赖于直接的主题特定匹配w.r.t、训练数据,而是利用知识库文档和SentiWordNet等来判断文章的质量。为了实现这一目标,我们专注于五个不同的特征:(1)信息的相关性,(2)稀疏连接词的存在,(3)词的统计和语义作用,(4)健谈术语的存在和(5)文章的长度。我们利用文本的词图提取所有这些特征,并填充词之间的统计关系、语义关系和主题关系。接下来,我们使用图理论技术,如:加权全对最短路径,自我网络,加权图中节点有效性的基于熵的度量,以及统计和概率技术,如:总相关分数和点明智互信息(PMI)等。我们在标准数据集上的实验结果表明,我们设计的系统比该领域最先进的系统性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coordination Model for Multi-robot Systems Based on Cooperative Behaviors JasMo - A Modularization Framework for Jason Examining Everyday Speech and Motor Symptoms of Parkinson's Disease for Diagnosis and Progression Tracking Quantifiers Types Resolution in NL Software Requirements An Uncertainty Quantification Method Based on Generalized Interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1