Matrix Evolutions: Synthetic Correlations and Explainable Machine Learning for Constructing Robust Investment Portfolios

Jochen Papenbrock, Peter Schwendner, Markus Jaeger, Stephan Krügel
{"title":"Matrix Evolutions: Synthetic Correlations and Explainable Machine Learning for Constructing Robust Investment Portfolios","authors":"Jochen Papenbrock, Peter Schwendner, Markus Jaeger, Stephan Krügel","doi":"10.2139/ssrn.3663220","DOIUrl":null,"url":null,"abstract":"In this article, the authors present a novel and highly flexible concept to simulate correlation matrixes of financial markets. It produces realistic outcomes regarding stylized facts of empirical correlation matrixes and requires no asset return input data. The matrix generation is based on a multiobjective evolutionary algorithm, so the authors call the approach matrix evolutions. It is suitable for parallel implementation and can be accelerated by graphics processing units and quantum-inspired algorithms. The approach is useful for backtesting, pricing, and hedging correlation-dependent investment strategies and financial products. Its potential is demonstrated in a machine learning case study for robust portfolio construction in a multi-asset universe: An explainable machine learning program links the synthetic matrixes to the portfolio volatility spread of hierarchical risk parity versus equal risk contribution. TOPICS: Statistical methods, big data/machine learning, portfolio construction, performance measurement Key Findings ▪ The authors introduce the matrix evolutions concept based on an evolutionary algorithm to simulate correlation matrixes useful for financial market applications. ▪ They apply the resulting synthetic correlation matrixes to benchmark hierarchical risk parity (HRP) and equal risk contribution allocations of a multi-asset futures portfolio and find HRP to show lower portfolio risk. ▪ The authors evaluate three competing machine learning methods to regress the portfolio risk spread between both allocation methods against statistical features of the synthetic correlation matrixes and then discuss the local and global feature importance using the SHAP framework by Lundberg and Lee (2017).","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3663220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this article, the authors present a novel and highly flexible concept to simulate correlation matrixes of financial markets. It produces realistic outcomes regarding stylized facts of empirical correlation matrixes and requires no asset return input data. The matrix generation is based on a multiobjective evolutionary algorithm, so the authors call the approach matrix evolutions. It is suitable for parallel implementation and can be accelerated by graphics processing units and quantum-inspired algorithms. The approach is useful for backtesting, pricing, and hedging correlation-dependent investment strategies and financial products. Its potential is demonstrated in a machine learning case study for robust portfolio construction in a multi-asset universe: An explainable machine learning program links the synthetic matrixes to the portfolio volatility spread of hierarchical risk parity versus equal risk contribution. TOPICS: Statistical methods, big data/machine learning, portfolio construction, performance measurement Key Findings ▪ The authors introduce the matrix evolutions concept based on an evolutionary algorithm to simulate correlation matrixes useful for financial market applications. ▪ They apply the resulting synthetic correlation matrixes to benchmark hierarchical risk parity (HRP) and equal risk contribution allocations of a multi-asset futures portfolio and find HRP to show lower portfolio risk. ▪ The authors evaluate three competing machine learning methods to regress the portfolio risk spread between both allocation methods against statistical features of the synthetic correlation matrixes and then discuss the local and global feature importance using the SHAP framework by Lundberg and Lee (2017).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矩阵演化:构建稳健投资组合的综合相关性和可解释的机器学习
在本文中,作者提出了一个新颖的、高度灵活的概念来模拟金融市场的相关矩阵。它产生关于经验相关矩阵的风格化事实的现实结果,并且不需要资产回报输入数据。由于矩阵生成是基于多目标进化算法,因此笔者将该方法称为矩阵进化。它适合并行实现,并且可以通过图形处理单元和量子启发算法来加速。该方法可用于回溯测试、定价和对冲相关性依赖的投资策略和金融产品。它的潜力在一个机器学习案例研究中得到了证明,该案例研究用于多资产领域的稳健投资组合构建:一个可解释的机器学习程序将合成矩阵与分层风险平价与等风险贡献的投资组合波动性传播联系起来。主题:统计方法,大数据/机器学习,投资组合构建,绩效评估。关键发现▪作者介绍了基于进化算法的矩阵进化概念,以模拟对金融市场应用有用的相关矩阵。▪他们将合成的相关矩阵应用于基准分层风险平价(HRP)和多资产期货投资组合的等风险贡献分配,并发现HRP显示较低的投资组合风险。▪作者评估了三种相互竞争的机器学习方法,以根据合成相关矩阵的统计特征回归两种分配方法之间的投资组合风险分布,然后使用Lundberg和Lee(2017)的SHAP框架讨论局部和全局特征的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Managing Editor’s Letter Explainable Machine Learning Models of Consumer Credit Risk Predicting Returns with Machine Learning across Horizons, Firm Size, and Time Deep Calibration with Artificial Neural Network: A Performance Comparison on Option-Pricing Models RIFT: Pretraining and Applications for Representations of Interrelated Financial Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1