Resume navigation and re-localization of an autonomous mobile robot after being kidnapped

R. Luo, K. C. Yeh, Kuan-Ho Huang
{"title":"Resume navigation and re-localization of an autonomous mobile robot after being kidnapped","authors":"R. Luo, K. C. Yeh, Kuan-Ho Huang","doi":"10.1109/ROSE.2013.6698410","DOIUrl":null,"url":null,"abstract":"The kidnapped robot problem is one of the essential issues in Human Robot Interaction research fields. This work addresses the problem of the position and orientation (pose) recovery after the robot being kidnapped, based on Laser Range Finder (LRF) sensor. By now the Monte Carlo Localization (MCL) has been introduced as a useful localization method. However the computational load of MCL is extremely large and not efficient at the initial few steps, which causes the localization process to take long computation time after the robot has been kidnapped and resets the particles. This paper provides a methodology to solve it by fusing MCL with Fast Library for Approximate Nearest Neighbors (FLANN) machine learning technique. We design a feature for LRF data called Geometric Structure Feature Histogram (GSFH).The feature GSFH encodes the LRF data to use it as the descriptor in FLANN. By building the database previously and FLANN searching technique, we filter out the most impossible area and reduce the computation load of MCL. Both in simulation and real autonomous mobile robot experiments show the effectiveness of our method.","PeriodicalId":187001,"journal":{"name":"2013 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2013.6698410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The kidnapped robot problem is one of the essential issues in Human Robot Interaction research fields. This work addresses the problem of the position and orientation (pose) recovery after the robot being kidnapped, based on Laser Range Finder (LRF) sensor. By now the Monte Carlo Localization (MCL) has been introduced as a useful localization method. However the computational load of MCL is extremely large and not efficient at the initial few steps, which causes the localization process to take long computation time after the robot has been kidnapped and resets the particles. This paper provides a methodology to solve it by fusing MCL with Fast Library for Approximate Nearest Neighbors (FLANN) machine learning technique. We design a feature for LRF data called Geometric Structure Feature Histogram (GSFH).The feature GSFH encodes the LRF data to use it as the descriptor in FLANN. By building the database previously and FLANN searching technique, we filter out the most impossible area and reduce the computation load of MCL. Both in simulation and real autonomous mobile robot experiments show the effectiveness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在被绑架后恢复自主移动机器人的导航和重新定位
绑架机器人问题是人机交互研究领域的核心问题之一。本文研究了基于激光测距(LRF)传感器的机器人被绑架后的位置和姿态恢复问题。目前,蒙特卡罗定位(MCL)是一种非常有用的定位方法。然而,MCL的计算量非常大,而且在最初的几个步骤中效率不高,这导致机器人在被绑架和重置粒子后定位过程需要很长的计算时间。本文提出了一种将MCL与FLANN (Fast Library for Approximate Nearest Neighbors)机器学习技术相融合的解决方法。我们为LRF数据设计了一种称为几何结构特征直方图(GSFH)的特征。特征GSFH对LRF数据进行编码,将其用作FLANN中的描述符。通过预先建立数据库和FLANN搜索技术,过滤掉了最不可能的区域,减少了MCL的计算量。仿真和实际自主移动机器人实验均证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving visual SLAM accuracy through deliberate camera oscillations Auction-based node selection of optimal and concurrent responses for a risk-aware robotic sensor network Multi-segment continuum robot shape estimation using passive cable displacement A new trajectory-based path planning approach for differential drive vehicles Automatic human brain MRI volumetric analysis technique using EM-algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1