Prototype Based Classification in Bioinformatics

Frank-Michael Schleif, T. Villmann, B. Hammer
{"title":"Prototype Based Classification in Bioinformatics","authors":"Frank-Michael Schleif, T. Villmann, B. Hammer","doi":"10.4018/978-1-59904-849-9.CH196","DOIUrl":null,"url":null,"abstract":"INTRODUCTION Bioinformatics has become an important tool to support clinical and biological research and the analysis of functional data, is a common task in bioinformatics (Schleif, 2006). Gene analysis in form of micro array analysis (Schena, 1995) and protein analysis (Twyman, 2004) are the most important fields leading to multiple sub omics-disciplines like pharmacogenomics, glycoproteomics or metabolomics. Measurements of such studies are high dimensional functional data with few samples for specific problems (Pusch, 2005). This leads to new challenges in the data analysis. Spectra of mass spectrometric measurements are such functional data requiring an appropriate analysis (Schleif, 2006). Here we focus on the determination of classification models for such data. In general, the spectra are transformed into a vector space followed by training a classifier (Haykin, 1999). Hereby the functional nature of the data is typically lost. We present a method which takes this specific data aspects into account. A wavelet encoding (Mallat, 1999) is applied onto the spectral data leading to a compact functional representation. Subsequently the Supervised Neural Gas classifier (Hammer, 2005) is applied, capable to handle functional metrics as introduced by Lee & Verleysen (Lee, 2005). This allows the classifier to utilize the functional nature of the data in the modelling process. The presented method is applied to clinical proteome data showing good results and can be used as a bioinformatics method for biomarker discovery.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

INTRODUCTION Bioinformatics has become an important tool to support clinical and biological research and the analysis of functional data, is a common task in bioinformatics (Schleif, 2006). Gene analysis in form of micro array analysis (Schena, 1995) and protein analysis (Twyman, 2004) are the most important fields leading to multiple sub omics-disciplines like pharmacogenomics, glycoproteomics or metabolomics. Measurements of such studies are high dimensional functional data with few samples for specific problems (Pusch, 2005). This leads to new challenges in the data analysis. Spectra of mass spectrometric measurements are such functional data requiring an appropriate analysis (Schleif, 2006). Here we focus on the determination of classification models for such data. In general, the spectra are transformed into a vector space followed by training a classifier (Haykin, 1999). Hereby the functional nature of the data is typically lost. We present a method which takes this specific data aspects into account. A wavelet encoding (Mallat, 1999) is applied onto the spectral data leading to a compact functional representation. Subsequently the Supervised Neural Gas classifier (Hammer, 2005) is applied, capable to handle functional metrics as introduced by Lee & Verleysen (Lee, 2005). This allows the classifier to utilize the functional nature of the data in the modelling process. The presented method is applied to clinical proteome data showing good results and can be used as a bioinformatics method for biomarker discovery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物信息学中基于原型的分类
生物信息学已经成为支持临床和生物学研究和功能数据分析的重要工具,是生物信息学的共同任务(Schleif, 2006)。微阵列分析形式的基因分析(Schena, 1995)和蛋白质分析(Twyman, 2004)是导致多个亚组学学科如药物基因组学、糖蛋白组学或代谢组学的最重要领域。这些研究的测量是高维函数数据,针对特定问题的样本很少(Pusch, 2005)。这给数据分析带来了新的挑战。质谱测量的光谱是需要适当分析的功能数据(Schleif, 2006)。在这里,我们着重于确定这些数据的分类模型。一般来说,光谱被转换成一个向量空间,然后训练一个分类器(Haykin, 1999)。因此,数据的功能性质通常会丢失。我们提出了一种考虑到这些具体数据方面的方法。一个小波编码(Mallat, 1999)被应用到光谱数据导致一个紧凑的功能表示。随后应用了监督神经气体分类器(Hammer, 2005),能够处理由Lee和Verleysen (Lee, 2005)引入的功能度量。这允许分类器在建模过程中利用数据的功能特性。该方法已应用于临床蛋白质组数据分析,结果良好,可作为一种生物信息学方法用于生物标志物的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emerging Applications in Immersive Technologies Knowledge-Based Systems RBF Networks for Power System Topology Verification Association Rule Mining "Narrative" Information Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1