Distributed Gauss-Newton method for node loclaization in wireless sensor networks

B. Cheng, R. E. Hudson, F. Lorenzelli, L. Vandenberghe, Kung Yao
{"title":"Distributed Gauss-Newton method for node loclaization in wireless sensor networks","authors":"B. Cheng, R. E. Hudson, F. Lorenzelli, L. Vandenberghe, Kung Yao","doi":"10.1109/SPAWC.2005.1506273","DOIUrl":null,"url":null,"abstract":"We present distributed algorithms for sensor localization based on the Gauss-Newton method. Each sensor updates its estimated location by computing the Gauss-Newton step for a local cost function and choosing a proper step length. Then it transmits the updated estimate to all the neighboring sensors. The proposed algorithms provide non-increasing values of a global cost function. It is shown in the paper that the algorithms have computational complexity of O(n) per iteration and a reduced communication cost over centralized algorithms.","PeriodicalId":105190,"journal":{"name":"International Workshop on Signal Processing Advances in Wireless Communications","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2005.1506273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present distributed algorithms for sensor localization based on the Gauss-Newton method. Each sensor updates its estimated location by computing the Gauss-Newton step for a local cost function and choosing a proper step length. Then it transmits the updated estimate to all the neighboring sensors. The proposed algorithms provide non-increasing values of a global cost function. It is shown in the paper that the algorithms have computational complexity of O(n) per iteration and a reduced communication cost over centralized algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线传感器网络节点定位的分布式高斯-牛顿方法
提出了基于高斯-牛顿方法的分布式传感器定位算法。每个传感器通过计算局部代价函数的高斯-牛顿步长并选择适当的步长来更新其估计位置。然后将更新后的估计值发送给所有邻近的传感器。所提出的算法提供了一个全局代价函数的非递增值。本文表明,该算法每次迭代的计算复杂度为0 (n),并且与集中式算法相比,通信成本降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fundamentals of massive MIMO Joint optimization of radio and computational resources for multicell mobile cloud computing OFDM systems with both transmitter and receiver IQ imbalances Channel shortening equalization for differential OFDM systems Distributed transmission protocol for lifetime maximization in sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1