Speaker verification using sparse representation over KSVD learned dictionary

B. C. Haris, R. Sinha
{"title":"Speaker verification using sparse representation over KSVD learned dictionary","authors":"B. C. Haris, R. Sinha","doi":"10.1109/NCC.2012.6176916","DOIUrl":null,"url":null,"abstract":"In this work, we explore the use of sparse representation of GMM mean shifted supervectors over a learned dictionary for the speaker verification (SV) task. In this method the dictionaries are learned using the KSVD algorithm unlike the recently proposed SV methods employing the sparse representation classification (SRC) over exemplar dictionaries. The proposed approach with learned dictionary results in an equal error rate of 1.56 % on NIST 2003 SRE dataset, which is found to be better than those of the state-of-the-art i-vector based approach and the exemplar based SRC approaches using either GMM mean shifted supervectors or i-vectors, with appropriate session/channel variability compensation techniques applied.","PeriodicalId":178278,"journal":{"name":"2012 National Conference on Communications (NCC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2012.6176916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In this work, we explore the use of sparse representation of GMM mean shifted supervectors over a learned dictionary for the speaker verification (SV) task. In this method the dictionaries are learned using the KSVD algorithm unlike the recently proposed SV methods employing the sparse representation classification (SRC) over exemplar dictionaries. The proposed approach with learned dictionary results in an equal error rate of 1.56 % on NIST 2003 SRE dataset, which is found to be better than those of the state-of-the-art i-vector based approach and the exemplar based SRC approaches using either GMM mean shifted supervectors or i-vectors, with appropriate session/channel variability compensation techniques applied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于KSVD学习字典的稀疏表示说话人验证
在这项工作中,我们探索了在一个学习字典上使用GMM均值移位超向量的稀疏表示来进行说话人验证(SV)任务。该方法使用KSVD算法学习字典,而不像最近提出的使用稀疏表示分类(SRC)的SV方法。基于学习字典的方法在NIST 2003 SRE数据集上的错误率为1.56%,优于最先进的基于i向量的方法和基于范例的SRC方法,这些方法使用GMM平均移位超向量或i向量,并应用了适当的会话/信道可变性补偿技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantized modulation diversity for 64-QAM IITKGP-MLILSC speech database for language identification Strip lined - Truncated ground plane for flat response of miniaturized UWB patch antenna On the underwater wireless network clustering Faster BIC segmentation using local speaker modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1