An adaptive fast algorithm based on variance for AVS2

Ling-An Zeng, Fan Liang, Liwei Xie
{"title":"An adaptive fast algorithm based on variance for AVS2","authors":"Ling-An Zeng, Fan Liang, Liwei Xie","doi":"10.1109/ICALIP.2016.7846592","DOIUrl":null,"url":null,"abstract":"In the second generation of Audio Video coding Standard(AVS2), the encoder tries all possible depth levels in order to select the best partition pattern for coding unit (CU) and prediction unit (PU). In this paper, we proposed an adaptive fast algorithm based on variance, which can effectually reduce the total encoding time with negligible bitrate increment for AVS2. Our algorithm utilizes the variance values which can represent the characters of the input image to determine the modes of CU partition and PU partition quickly. Simulation results show that the proposed algorithm can reduce the encoding time by 21%, 31% and 31% on average and only increase the bitrate by 0.58%, 0.17% and 0.16% in all intra, low delay and random access configuration compared to RD 12.0. The top performance of encoding time can be saved up to 69% just with 0.69% bitrate increment. The time reduction of our algorithm is most outstanding on high-definition (HD) video sequences.","PeriodicalId":184170,"journal":{"name":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALIP.2016.7846592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the second generation of Audio Video coding Standard(AVS2), the encoder tries all possible depth levels in order to select the best partition pattern for coding unit (CU) and prediction unit (PU). In this paper, we proposed an adaptive fast algorithm based on variance, which can effectually reduce the total encoding time with negligible bitrate increment for AVS2. Our algorithm utilizes the variance values which can represent the characters of the input image to determine the modes of CU partition and PU partition quickly. Simulation results show that the proposed algorithm can reduce the encoding time by 21%, 31% and 31% on average and only increase the bitrate by 0.58%, 0.17% and 0.16% in all intra, low delay and random access configuration compared to RD 12.0. The top performance of encoding time can be saved up to 69% just with 0.69% bitrate increment. The time reduction of our algorithm is most outstanding on high-definition (HD) video sequences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于方差的AVS2自适应快速算法
在第二代音视频编码标准(AVS2)中,为了选择编码单元(CU)和预测单元(PU)的最佳划分模式,编码器尝试了所有可能的深度级别。本文提出了一种基于方差的自适应快速算法,可以有效地减少AVS2的总编码时间,且比特率增量可以忽略不计。该算法利用能代表输入图像特征的方差值来快速确定CU分区和PU分区的模式。仿真结果表明,与rd12.0相比,该算法在所有低时延、随机接入配置下的编码时间平均缩短21%、31%和31%,比特率仅提高0.58%、0.17%和0.16%。当比特率增加0.69%时,编码时间最多可节省69%。该算法在高清视频序列上的时间缩减效果最为突出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of student activities trajectory and design of attendance management based on internet of things An RFID indoor positioning system by using Particle Swarm Optimization-based Artificial Neural Network Comparison of sparse-view CT image reconstruction algorithms Face recognition based on LBPH and regression of Local Binary features Research and application of dynamic and interactive data visualization based on D3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1