An Enhanced LSTM Method to Improve the Accuracy of the Business Process Prediction

Mohammad Hasan Adalat, R. Azmi, J. Bagherinejad
{"title":"An Enhanced LSTM Method to Improve the Accuracy of the Business Process Prediction","authors":"Mohammad Hasan Adalat, R. Azmi, J. Bagherinejad","doi":"10.29252/jimp.10.3.71","DOIUrl":null,"url":null,"abstract":"Abstract Prediction of the process behavior plays a key role in business process management. This research benefits from recent development in the field of deep learning to predict the next event in business processes. The proposed method uses Long Short-Term Memory (LSTM) as a promising architecture of recurrent neural networks. This architecture is implemented using a number of configurations with the aim of investigating how each of them affects the performance of the prediction models. In order to build and evaluate our prediction models, we used two publicly available datasets (BPI 2012 and BPI 2017). After developing 300 prediction models, the results indicated that the proposed method outperforms the state-of-the-art methods in terms of precision. The best result in terms of Accuracy (0.907) was achieved through “one-hidden” layer LSTM architecture and by using “Big” configuration in the absence of “feedback”.","PeriodicalId":303885,"journal":{"name":"Journal of Industrial Management Perspective","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Management Perspective","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/jimp.10.3.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Prediction of the process behavior plays a key role in business process management. This research benefits from recent development in the field of deep learning to predict the next event in business processes. The proposed method uses Long Short-Term Memory (LSTM) as a promising architecture of recurrent neural networks. This architecture is implemented using a number of configurations with the aim of investigating how each of them affects the performance of the prediction models. In order to build and evaluate our prediction models, we used two publicly available datasets (BPI 2012 and BPI 2017). After developing 300 prediction models, the results indicated that the proposed method outperforms the state-of-the-art methods in terms of precision. The best result in terms of Accuracy (0.907) was achieved through “one-hidden” layer LSTM architecture and by using “Big” configuration in the absence of “feedback”.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的LSTM方法提高业务流程预测的准确性
流程行为预测在业务流程管理中起着关键作用。这项研究得益于深度学习领域的最新发展,以预测业务流程中的下一个事件。该方法将长短期记忆(LSTM)作为一种很有前途的递归神经网络结构。该体系结构使用许多配置来实现,目的是研究每种配置如何影响预测模型的性能。为了构建和评估我们的预测模型,我们使用了两个公开可用的数据集(BPI 2012和BPI 2017)。在建立了300个预测模型后,结果表明,所提出的方法在精度方面优于目前最先进的方法。准确度方面的最佳结果(0.907)是通过“一隐藏”层LSTM架构和在没有“反馈”的情况下使用“大”配置实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power Industry’s Life Cycle Simulation using Agent Based Modeling Presenting a Model to Optimization Simulation of EFQM Excellence Model Approaches using System Dynamics and Genetic Algorithms in I.R.Iran Banking Network A Simulation – Optimization Model of Network Failure Prone Manufacturing Systems with a Reliability-Based Maintenance and Revenue Sharing Approach Proposing a Dynamic Two-Step Approach for Designing Supplier Development Strategy A Dynamic Production Planning Model Based on Optimization of a Hybrid Push/Pull System, Considering Demand Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1