Nonstandard Estimation of Inverse Conditional Density-Weighted Expectations

Chuan Goh
{"title":"Nonstandard Estimation of Inverse Conditional Density-Weighted Expectations","authors":"Chuan Goh","doi":"10.2139/ssrn.1333779","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the semiparametric estimation of function means that are scaled by an unknown conditional density function. Parameters of this form arise naturally in the consideration of models where interest is focused on the expected value of an integral of a conditional expectation with respect to a continuously distributed “special regressor”' with unbounded support. In particular, a consistent and asymptotically normal estimator of an inverse conditional density-weighted average is proposed whose validity does not require data-dependent trimming or the subjective choice of smoothing parameters. The asymptotic normality result is also rate adaptive in the sense that it allows for the formulation of the usual Wald-type inference procedures without knowledge of the estimator's actual rate of convergence, which depends in general on the tail behaviour of the conditional density weight. The theory developed in this paper exploits recent results of Goh & Knight (2009) concerning the behaviour of estimated regression-quantile residuals. Simulation experiments illustrating the applicability of the procedure proposed here to a semiparametric binary-choice model are suggestive of good small-sample performance.","PeriodicalId":165362,"journal":{"name":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1333779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the semiparametric estimation of function means that are scaled by an unknown conditional density function. Parameters of this form arise naturally in the consideration of models where interest is focused on the expected value of an integral of a conditional expectation with respect to a continuously distributed “special regressor”' with unbounded support. In particular, a consistent and asymptotically normal estimator of an inverse conditional density-weighted average is proposed whose validity does not require data-dependent trimming or the subjective choice of smoothing parameters. The asymptotic normality result is also rate adaptive in the sense that it allows for the formulation of the usual Wald-type inference procedures without knowledge of the estimator's actual rate of convergence, which depends in general on the tail behaviour of the conditional density weight. The theory developed in this paper exploits recent results of Goh & Knight (2009) concerning the behaviour of estimated regression-quantile residuals. Simulation experiments illustrating the applicability of the procedure proposed here to a semiparametric binary-choice model are suggestive of good small-sample performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逆条件密度加权期望的非标准估计
研究了由未知条件密度函数标度的函数均值的半参数估计问题。这种形式的参数在考虑模型时自然出现,其中兴趣集中在条件期望的积分的期望值上,相对于具有无界支持的连续分布的“特殊回归量”。特别地,提出了逆条件密度加权平均的一致渐近正态估计,其有效性不需要依赖于数据的修剪或平滑参数的主观选择。渐近正态性结果在某种意义上也是自适应的,因为它允许在不知道估计器的实际收敛率的情况下制定通常的wald型推理过程,这通常取决于条件密度权重的尾部行为。本文开发的理论利用了Goh和Knight(2009)关于估计回归分位数残差行为的最新结果。仿真实验表明,本文提出的方法适用于半参数二值选择模型,具有良好的小样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assortment Optimization and Pricing Under the Threshold-Based Choice Models Robust Techniques to Estimate Parameters of Linear Models Identification of Random Coefficient Latent Utility Models An Algorithm for Assortment Optimization Under Parametric Discrete Choice Models Equivalent Choice Functions and Stable Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1