Improving Classification Accuracy of a Machine Learning Approach for FPGA Timing Closure

Que Yanghua, Nachiket Kapre, Harnhua Ng, K. Teo
{"title":"Improving Classification Accuracy of a Machine Learning Approach for FPGA Timing Closure","authors":"Que Yanghua, Nachiket Kapre, Harnhua Ng, K. Teo","doi":"10.1109/FCCM.2016.28","DOIUrl":null,"url":null,"abstract":"We can use Cloud Computing and Machine Learning to help deliver timing closure of FPGA designs using InTime [2], [3]. This approach requires no modification to the input RTL and relies exclusively on manipulating the CAD tool parameters that drive the optimization heuristics. By running multiple combinations of the parameters in parallel, we learn from results and identify which parameters caused an improvement in the final results. By systematically building a classification model and training it with the results of the parallel CAD runs, we can build an accurate estimation flow for helping identify which parameters are more likely to improve the timing. In this paper, we consider strategies for improving the predictive accuracy of our classifier models to help guide the CAD run towards timing convergence. With ensemble learning we are able to increase average AUC score from 0.74 to 0.79, which could also translate into 2.7× savings in machine learning effort.","PeriodicalId":113498,"journal":{"name":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2016.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We can use Cloud Computing and Machine Learning to help deliver timing closure of FPGA designs using InTime [2], [3]. This approach requires no modification to the input RTL and relies exclusively on manipulating the CAD tool parameters that drive the optimization heuristics. By running multiple combinations of the parameters in parallel, we learn from results and identify which parameters caused an improvement in the final results. By systematically building a classification model and training it with the results of the parallel CAD runs, we can build an accurate estimation flow for helping identify which parameters are more likely to improve the timing. In this paper, we consider strategies for improving the predictive accuracy of our classifier models to help guide the CAD run towards timing convergence. With ensemble learning we are able to increase average AUC score from 0.74 to 0.79, which could also translate into 2.7× savings in machine learning effort.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高FPGA时序闭合机器学习方法的分类精度
我们可以使用云计算和机器学习来帮助InTime提供FPGA设计的时序关闭[2],[3]。这种方法不需要修改输入RTL,并且完全依赖于操纵驱动优化启发式的CAD工具参数。通过并行运行多个参数组合,我们从结果中学习,并确定哪些参数导致了最终结果的改进。通过系统地建立一个分类模型,并使用并行CAD运行的结果对其进行训练,我们可以建立一个准确的估计流程,以帮助识别哪些参数更有可能改善时序。在本文中,我们考虑了提高分类器模型预测精度的策略,以帮助指导CAD朝着定时收敛的方向运行。通过集成学习,我们能够将平均AUC分数从0.74提高到0.79,这也可以转化为机器学习工作量的2.7倍节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatial Predicates Evaluation in the Geohash Domain Using Reconfigurable Hardware Two-Hit Filter Synthesis for Genomic Database Search Initiation Interval Aware Resource Sharing for FPGA DSP Blocks Finding Space-Time Stream Permutations for Minimum Memory and Latency Runtime Parameterizable Regular Expression Operators for Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1