{"title":"Stop Rerouting!: Enabling ShareBackup for Failure Recovery in Data Center Networks","authors":"Yiting Xia, X. Huang, T. Ng","doi":"10.1145/3152434.3152452","DOIUrl":null,"url":null,"abstract":"This paper introduces sharable backup as a novel solution to failure recovery in data center networks. It allows the entire network to share a small pool of backup devices. This proposal is grounded in three key observations. First, the traditional rerouting-based failure recovery is ineffective, because bandwidth loss from failures degrades application performance drastically. Therefore, failed devices should be replaced to restore bandwidth. Second, failures in data centers are rare but destructive [11], so it is desirable to seek cost-effective backup options. Third, the emergence of configurable data center network architectures promises feasibility of bringing backup devices online dynamically. We design the ShareBackup prototype architecture to realize this idea. Compared to rerouting-based solutions, ShareBackup provides more bandwidth with short path length at low cost.","PeriodicalId":120886,"journal":{"name":"Proceedings of the 16th ACM Workshop on Hot Topics in Networks","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Workshop on Hot Topics in Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3152434.3152452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper introduces sharable backup as a novel solution to failure recovery in data center networks. It allows the entire network to share a small pool of backup devices. This proposal is grounded in three key observations. First, the traditional rerouting-based failure recovery is ineffective, because bandwidth loss from failures degrades application performance drastically. Therefore, failed devices should be replaced to restore bandwidth. Second, failures in data centers are rare but destructive [11], so it is desirable to seek cost-effective backup options. Third, the emergence of configurable data center network architectures promises feasibility of bringing backup devices online dynamically. We design the ShareBackup prototype architecture to realize this idea. Compared to rerouting-based solutions, ShareBackup provides more bandwidth with short path length at low cost.