Visual Inspection of DBS Efficacy

B. Hollister, Gordon Duffley, C. Butson, Chris R. Johnson, P. Rosen
{"title":"Visual Inspection of DBS Efficacy","authors":"B. Hollister, Gordon Duffley, C. Butson, Chris R. Johnson, P. Rosen","doi":"10.1109/VISUAL.2019.8933720","DOIUrl":null,"url":null,"abstract":"At present, approximately ten million people worldwide are afflicted by Parkinson’s Disease (PD). One of the most promising therapies for PD is Deep Brain Stimulation (DBS). DBS works via stimulation of targeted central brain regions (nuclei), whose dysfunction is implicated in PD. A key problem with DBS is determining optimal parameters for clinical outcome. While multiple parameters may influence outcomes in DBS, we explore spatial correlation of volume of tissue activated (VTA) to Unified Parkinson’s Disease Rating Scale (UPDRS) scores. Using the Neurostimulation Uncertainty Viewer (nuView), we investigate a number of cooperative visualizations for DBS inspection. Surface-to-surface Euclidean distance between VTA and selected brain nuclei are used in a linked 3D and parallel coordinates view of patient outcome. We then present a semivariogram-based approach to measure spatial correlation of patient outcomes with VTA. As a third component, nuView provides a unique visualization of an ensemble of electrode placements to reduce clutter and emphasize electrodes with spatially similar VTA. These methods corroborate a spatial aspect to DBS efficacy.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

At present, approximately ten million people worldwide are afflicted by Parkinson’s Disease (PD). One of the most promising therapies for PD is Deep Brain Stimulation (DBS). DBS works via stimulation of targeted central brain regions (nuclei), whose dysfunction is implicated in PD. A key problem with DBS is determining optimal parameters for clinical outcome. While multiple parameters may influence outcomes in DBS, we explore spatial correlation of volume of tissue activated (VTA) to Unified Parkinson’s Disease Rating Scale (UPDRS) scores. Using the Neurostimulation Uncertainty Viewer (nuView), we investigate a number of cooperative visualizations for DBS inspection. Surface-to-surface Euclidean distance between VTA and selected brain nuclei are used in a linked 3D and parallel coordinates view of patient outcome. We then present a semivariogram-based approach to measure spatial correlation of patient outcomes with VTA. As a third component, nuView provides a unique visualization of an ensemble of electrode placements to reduce clutter and emphasize electrodes with spatially similar VTA. These methods corroborate a spatial aspect to DBS efficacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DBS疗效的目视检查
目前,全世界约有1000万人患有帕金森病。深部脑刺激(DBS)是治疗帕金森病最有前途的疗法之一。DBS通过刺激目标中枢脑区(核)起作用,其功能障碍与PD有关。DBS的一个关键问题是确定临床结果的最佳参数。虽然多个参数可能影响DBS的结果,但我们探索了组织激活体积(VTA)与统一帕金森病评定量表(UPDRS)评分的空间相关性。使用神经刺激不确定性查看器(nuView),我们研究了DBS检查的一些合作可视化。VTA和选定的脑核之间的表面到表面的欧几里得距离用于连接的3D和平行坐标视图的患者结果。然后,我们提出了一种基于半变方差的方法来测量VTA患者预后的空间相关性。作为第三个组件,nuView提供了独特的电极放置集成可视化,以减少混乱,并强调具有空间相似VTA的电极。这些方法证实了DBS疗效的空间方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EasyPZ.js: Interaction Binding for Pan and Zoom Visualizations Uncovering Data Landscapes through Data Reconnaissance and Task Wrangling Disentangled Representation of Data Distributions in Scatterplots RuleVis: Constructing Patterns and Rules for Rule-Based Models Interactive Bicluster Aggregation in Bipartite Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1