Advanced partitioning techniques for massively distributed computation

Jingren Zhou, Nicolas Bruno, Wei Lin
{"title":"Advanced partitioning techniques for massively distributed computation","authors":"Jingren Zhou, Nicolas Bruno, Wei Lin","doi":"10.1145/2213836.2213839","DOIUrl":null,"url":null,"abstract":"An increasing number of companies rely on distributed data storage and processing over large clusters of commodity machines for critical business decisions. Although plain MapReduce systems provide several benefits, they carry certain limitations that impact developer productivity and optimization opportunities. Higher level programming languages plus conceptual data models have recently emerged to address such limitations. These languages offer a single machine programming abstraction and are able to perform sophisticated query optimization and apply efficient execution strategies. In massively distributed computation, data shuffling is typically the most expensive operation and can lead to serious performance bottlenecks if not done properly. An important optimization opportunity in this environment is that of judicious placement of repartitioning operators and choice of alternative implementations. In this paper we discuss advanced partitioning strategies, their implementation, and how they are integrated in the Microsoft Scope system. We show experimentally that our approach significantly improves performance for a large class of real-world jobs.","PeriodicalId":212616,"journal":{"name":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213836.2213839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

An increasing number of companies rely on distributed data storage and processing over large clusters of commodity machines for critical business decisions. Although plain MapReduce systems provide several benefits, they carry certain limitations that impact developer productivity and optimization opportunities. Higher level programming languages plus conceptual data models have recently emerged to address such limitations. These languages offer a single machine programming abstraction and are able to perform sophisticated query optimization and apply efficient execution strategies. In massively distributed computation, data shuffling is typically the most expensive operation and can lead to serious performance bottlenecks if not done properly. An important optimization opportunity in this environment is that of judicious placement of repartitioning operators and choice of alternative implementations. In this paper we discuss advanced partitioning strategies, their implementation, and how they are integrated in the Microsoft Scope system. We show experimentally that our approach significantly improves performance for a large class of real-world jobs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模分布式计算的高级分区技术
越来越多的公司依靠大型商用机器集群上的分布式数据存储和处理来做出关键的业务决策。尽管普通的MapReduce系统提供了一些好处,但它们也有一定的局限性,会影响开发人员的生产力和优化机会。最近出现了高级编程语言和概念数据模型来解决这些限制。这些语言提供单一的机器编程抽象,能够执行复杂的查询优化和应用有效的执行策略。在大规模分布式计算中,数据变换通常是最昂贵的操作,如果处理不当,可能会导致严重的性能瓶颈。在这种环境中,一个重要的优化机会是明智地放置重分区操作符和选择替代实现。在本文中,我们讨论了高级分区策略,它们的实现,以及它们如何集成到Microsoft Scope系统中。我们通过实验证明,我们的方法显著提高了现实世界中大量工作的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CloudRAMSort: fast and efficient large-scale distributed RAM sort on shared-nothing cluster DP-tree: indexing multi-dimensional data under differential privacy (abstract only) Dynamic optimization of generalized SQL queries with horizontal aggregations A model-based approach to attributed graph clustering JustMyFriends: full SQL, full transactional amenities, and access privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1