Scalable Multi-FPGA Acceleration for Large RNNs with Full Parallelism Levels

Dongup Kwon, Suyeon Hur, Hamin Jang, E. Nurvitadhi, Jangwoo Kim
{"title":"Scalable Multi-FPGA Acceleration for Large RNNs with Full Parallelism Levels","authors":"Dongup Kwon, Suyeon Hur, Hamin Jang, E. Nurvitadhi, Jangwoo Kim","doi":"10.1109/DAC18072.2020.9218528","DOIUrl":null,"url":null,"abstract":"The increasing size of recurrent neural networks (RNNs) makes it hard to meet the growing demand for real-time AI services. For low-latency RNN serving, FPGA-based accelerators can leverage specialized architectures with optimized dataflow. However, they also suffer from severe HW under-utilization when partitioning RNNs, and thus fail to obtain the scalable performance.In this paper, we identify the performance bottlenecks of existing RNN partitioning strategies. Then, we propose a novel RNN partitioning strategy to achieve the scalable multi-FPGA acceleration for large RNNs. First, we introduce three parallelism levels and exploit them by partitioning weight matrices, matrix/vector operations, and layers. Second, we examine the performance impact of collective communications and software pipelining to derive more accurate and optimal distribution results. We prototyped an FPGA-based acceleration system using multiple Intel high-end FPGAs, and our partitioning scheme allows up to 2.4x faster inference of modern RNN workloads than conventional partitioning methods.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The increasing size of recurrent neural networks (RNNs) makes it hard to meet the growing demand for real-time AI services. For low-latency RNN serving, FPGA-based accelerators can leverage specialized architectures with optimized dataflow. However, they also suffer from severe HW under-utilization when partitioning RNNs, and thus fail to obtain the scalable performance.In this paper, we identify the performance bottlenecks of existing RNN partitioning strategies. Then, we propose a novel RNN partitioning strategy to achieve the scalable multi-FPGA acceleration for large RNNs. First, we introduce three parallelism levels and exploit them by partitioning weight matrices, matrix/vector operations, and layers. Second, we examine the performance impact of collective communications and software pipelining to derive more accurate and optimal distribution results. We prototyped an FPGA-based acceleration system using multiple Intel high-end FPGAs, and our partitioning scheme allows up to 2.4x faster inference of modern RNN workloads than conventional partitioning methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有完全并行性的大型rnn的可扩展多fpga加速
递归神经网络(rnn)的规模不断扩大,难以满足日益增长的实时人工智能服务需求。对于低延迟RNN服务,基于fpga的加速器可以利用具有优化数据流的专用架构。然而,它们在对rnn进行分区时也存在严重的硬件利用率不足,无法获得可扩展性能。在本文中,我们识别了现有RNN分区策略的性能瓶颈。然后,我们提出了一种新的RNN划分策略,以实现大型RNN的可扩展多fpga加速。首先,我们引入了三个并行性级别,并通过划分权重矩阵、矩阵/向量操作和层来利用它们。其次,我们研究了集体通信和软件流水线对性能的影响,以得出更准确和最优的分布结果。我们使用多个英特尔高端fpga原型设计了一个基于fpga的加速系统,我们的分区方案允许比传统分区方法快2.4倍的现代RNN工作负载推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1