The Implementation of the SLAM Method in ROS System and Underwater Robot

Fei Suo, Jiaqi Lv, Zhan Wang
{"title":"The Implementation of the SLAM Method in ROS System and Underwater Robot","authors":"Fei Suo, Jiaqi Lv, Zhan Wang","doi":"10.1109/ICUS55513.2022.9986897","DOIUrl":null,"url":null,"abstract":"Autonomous localization and map construction of underwater robots in unknown environments is a very important research area. Visual SLAM technology is based on visual processing algorithms and can accomplish this task at a low cost. This paper focuses on a set of underwater robot visual SLAM experimental process. Based on ROS system, Mono visual SLAM experiments are performed on UWSim simulation environment and real robot respectively by using mature ORB-SLAM2 algorithm. The experimental results show that this method can accurately build the sparse point cloud map of the environment under the condition of sufficient environmental feature points.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9986897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous localization and map construction of underwater robots in unknown environments is a very important research area. Visual SLAM technology is based on visual processing algorithms and can accomplish this task at a low cost. This paper focuses on a set of underwater robot visual SLAM experimental process. Based on ROS system, Mono visual SLAM experiments are performed on UWSim simulation environment and real robot respectively by using mature ORB-SLAM2 algorithm. The experimental results show that this method can accurately build the sparse point cloud map of the environment under the condition of sufficient environmental feature points.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SLAM方法在ROS系统和水下机器人中的实现
水下机器人在未知环境下的自主定位与地图构建是一个非常重要的研究领域。视觉SLAM技术基于视觉处理算法,可以以较低的成本完成这一任务。本文主要研究了一套水下机器人视觉SLAM的实验过程。基于ROS系统,采用成熟的ORB-SLAM2算法,分别在UWSim仿真环境和真实机器人上进行了单视觉SLAM实验。实验结果表明,该方法可以在环境特征点充足的情况下,准确地构建环境的稀疏点云图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UNF-SLAM: Unsupervised Feature Extraction Network for Visual-Laser Fusion SLAM Automatic Spinal Ultrasound Image Segmentation and Deployment for Real-time Spine Volumetric Reconstruction Track Matching Method of Sea Surface Targets Based on Improved Longest Common Subsequence Algorithm A dynamic event-triggered leader-following consensus algorithm for multi-AUVs system Adaptive Multi-feature Fusion Improved ECO-HC Image Tracking Algorithm Based on Confidence Judgement for UAV Reconnaissance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1