Robust Regression via Online Feature Selection Under Adversarial Data Corruption

Xuchao Zhang, Shuo Lei, Liang Zhao, Arnold P. Boedihardjo, Chang-Tien Lu
{"title":"Robust Regression via Online Feature Selection Under Adversarial Data Corruption","authors":"Xuchao Zhang, Shuo Lei, Liang Zhao, Arnold P. Boedihardjo, Chang-Tien Lu","doi":"10.1109/ICDM.2018.00199","DOIUrl":null,"url":null,"abstract":"The presence of data corruption in user-generated streaming data, such as social media, motivates a new fundamental problem that learns reliable regression coefficient when features are not accessible entirely at one time. Until now, several important challenges still cannot be handled concurrently: 1) corrupted data estimation when only partial features are accessible; 2) online feature selection when data contains adversarial corruption; and 3) scaling to a massive dataset. This paper proposes a novel RObust regression algorithm via Online Feature Selection (RoOFS) that concurrently addresses all the above challenges. Specifically, the algorithm iteratively updates the regression coefficients and the uncorrupted set via a robust online feature substitution method. Extensive empirical experiments in both synthetic and real-world data sets demonstrated that the effectiveness of our new method is superior to that of existing methods in the recovery of both feature selection and regression coefficients, with very competitive efficiency.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The presence of data corruption in user-generated streaming data, such as social media, motivates a new fundamental problem that learns reliable regression coefficient when features are not accessible entirely at one time. Until now, several important challenges still cannot be handled concurrently: 1) corrupted data estimation when only partial features are accessible; 2) online feature selection when data contains adversarial corruption; and 3) scaling to a massive dataset. This paper proposes a novel RObust regression algorithm via Online Feature Selection (RoOFS) that concurrently addresses all the above challenges. Specifically, the algorithm iteratively updates the regression coefficients and the uncorrupted set via a robust online feature substitution method. Extensive empirical experiments in both synthetic and real-world data sets demonstrated that the effectiveness of our new method is superior to that of existing methods in the recovery of both feature selection and regression coefficients, with very competitive efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对抗性数据损坏下基于在线特征选择的鲁棒回归
用户生成的流数据(如社交媒体)中数据损坏的存在引发了一个新的基本问题,即当特征不能一次完全访问时,学习可靠的回归系数。到目前为止,几个重要的挑战仍然不能同时解决:1)当只有部分特征可访问时损坏的数据估计;2)数据包含对抗性损坏时的在线特征选择;3)扩展到一个庞大的数据集。本文提出了一种基于在线特征选择的鲁棒回归算法,该算法同时解决了上述所有挑战。具体而言,该算法通过鲁棒在线特征替换方法迭代更新回归系数和未损坏集。在合成数据集和真实数据集上进行的大量经验实验表明,我们的新方法在特征选择和回归系数的恢复方面都优于现有方法,具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1