Regularization of orthonormal vector sets using coupled PDE's

D. Tschumperlé, R. Deriche
{"title":"Regularization of orthonormal vector sets using coupled PDE's","authors":"D. Tschumperlé, R. Deriche","doi":"10.1109/VLSM.2001.938875","DOIUrl":null,"url":null,"abstract":"We address the problem of restoring, while presenting possible discontinuities, fields of noisy orthonormal vector sets, taking the orthonormal constraints explicity into account. We develop a variational solution for the general case where each image feature may correspond to multiple n-D orthogonal vectors of unit norms. We first formulate the problem in a new variational framework, where discontinuities and orthonormal constraints are preserved by means of constrained minimization and /spl Phi/-function regularization, leading to a set of coupled anisotropic diffusion PDE. A geometric interpretation of the resulting equations, coming from the field of solid mechanics, is proposed for the 3D case. Two interesting restrictions of our framework are also tackled: the regularization of 30 rotation matrices and the direction diffusion (the parallel with previous works is made). Finally, we present a number of denoising results and applications.","PeriodicalId":445975,"journal":{"name":"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSM.2001.938875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

We address the problem of restoring, while presenting possible discontinuities, fields of noisy orthonormal vector sets, taking the orthonormal constraints explicity into account. We develop a variational solution for the general case where each image feature may correspond to multiple n-D orthogonal vectors of unit norms. We first formulate the problem in a new variational framework, where discontinuities and orthonormal constraints are preserved by means of constrained minimization and /spl Phi/-function regularization, leading to a set of coupled anisotropic diffusion PDE. A geometric interpretation of the resulting equations, coming from the field of solid mechanics, is proposed for the 3D case. Two interesting restrictions of our framework are also tackled: the regularization of 30 rotation matrices and the direction diffusion (the parallel with previous works is made). Finally, we present a number of denoising results and applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用耦合偏微分方程正则化正交向量集
考虑到标准正交约束的显式性,我们解决了恢复问题,同时提出了可能的不连续,有噪声的标准正交向量集的域。我们开发了一个变分解的一般情况下,每个图像特征可能对应于多个n-D正交向量的单位规范。我们首先在一个新的变分框架中表达问题,其中通过约束最小化和/spl Phi/-函数正则化来保留不连续和标准正交约束,从而得到一组耦合的各向异性扩散PDE。从固体力学的角度对所得方程进行了几何解释,并对三维情况进行了分析。我们的框架还解决了两个有趣的限制:30个旋转矩阵的正则化和方向扩散(与之前的工作平行)。最后,我们给出了一些去噪的结果和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Variational problems and PDEs on implicit surfaces A summary of geometric level-set analogues for a general class of parametric active contour and surface models Combining total variation and wavelet packet approaches for image deblurring 3D automated segmentation and structural analysis of vascular trees using deformable models Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1