Reinforcement learning-based channel sharing in wireless vehicular networks

Andreas Pressas, Zhengguo Sheng, F. Ali
{"title":"Reinforcement learning-based channel sharing in wireless vehicular networks","authors":"Andreas Pressas, Zhengguo Sheng, F. Ali","doi":"10.1049/PBTE081E_CH7","DOIUrl":null,"url":null,"abstract":"In this chapter, the authors study the enhancement of the proposed IEEE 802.11p medium access control (MAC) layer for vehicular use by applying reinforcement learning (RL). The purpose of this adaptive channel access control technique is enabling more reliable, high-throughput data exchanges among moving vehicles for cooperative awareness purposes. Some technical background for vehicular networks is presented, as well as some relevant existing solutions tackling similar channel sharing problems. Finally, some new findings from combining the IEEE 802.11p MAC with RL-based adaptation and insight of the various challenges appearing when applying such mechanisms in a wireless vehicular network are presented.","PeriodicalId":358911,"journal":{"name":"Applications of Machine Learning in Wireless Communications","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Machine Learning in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/PBTE081E_CH7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this chapter, the authors study the enhancement of the proposed IEEE 802.11p medium access control (MAC) layer for vehicular use by applying reinforcement learning (RL). The purpose of this adaptive channel access control technique is enabling more reliable, high-throughput data exchanges among moving vehicles for cooperative awareness purposes. Some technical background for vehicular networks is presented, as well as some relevant existing solutions tackling similar channel sharing problems. Finally, some new findings from combining the IEEE 802.11p MAC with RL-based adaptation and insight of the various challenges appearing when applying such mechanisms in a wireless vehicular network are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习的无线车载网络信道共享
在本章中,作者研究了通过应用强化学习(RL)来增强车辆使用的IEEE 802.11p介质访问控制(MAC)层。这种自适应通道访问控制技术的目的是在移动车辆之间实现更可靠、高吞吐量的数据交换,以实现协作感知目的。介绍了车联网的一些技术背景,以及解决类似信道共享问题的一些相关的现有解决方案。最后,介绍了将IEEE 802.11p MAC与基于rl的自适应相结合的一些新发现,以及在无线车载网络中应用此类机制时出现的各种挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-driven vehicular mobility modeling and prediction Back Matter Machine-learning-based channel estimation Deep learning for indoor localization based on bimodal CSI data Compressive sensing for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1