Using neural networks and deep learning algorithms in electrical impedance tomography

G. Kłosowski, T. Rymarczyk
{"title":"Using neural networks and deep learning algorithms in electrical impedance tomography","authors":"G. Kłosowski, T. Rymarczyk","doi":"10.5604/01.3001.0010.5226","DOIUrl":null,"url":null,"abstract":"This paper refers to the cases of the use of Artificial Neural Networks and Convolutional Neural Networks in impedance tomography. Machine Learning methods can be used to teach computers different technical problems. The efficient use of conventional artificial neural networks in tomography is possible able to effectively visualize objects. The first step of implementation Deep Learning methods in Electrical Impedance Tomography was performed in this work.","PeriodicalId":142227,"journal":{"name":"Informatics, Control, Measurement in Economy and Environment Protection","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics, Control, Measurement in Economy and Environment Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0010.5226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

This paper refers to the cases of the use of Artificial Neural Networks and Convolutional Neural Networks in impedance tomography. Machine Learning methods can be used to teach computers different technical problems. The efficient use of conventional artificial neural networks in tomography is possible able to effectively visualize objects. The first step of implementation Deep Learning methods in Electrical Impedance Tomography was performed in this work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在电阻抗断层扫描中使用神经网络和深度学习算法
本文介绍了人工神经网络和卷积神经网络在阻抗层析成像中的应用。机器学习方法可以用来教计算机不同的技术问题。传统的人工神经网络在断层扫描中的有效使用是可能的,能够有效地可视化物体。本文完成了在电阻抗断层成像中实现深度学习方法的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Imitation modeling of the routing process based on fuzzy logic SPECTRAL SENSITIVITY OF HUMAN VISION TO THE LIGHT PULSES Peculiarities of the radio signals and hindrances in the navigation system of the remote-piloted vehicles Generalized approach to Hurst exponent estimating by time series DETERMINATION OF THE EFFICIENCY FACTORS OF THE ABSORPTION AND SCATTERING OF NICKEL NANOPARTICLES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1