Power Quality Disturbance Recognition Based on Wavelet Transform and Convolutional Neural Network

Wenhui Hong, Ziwen Liu, Xuyan Wu
{"title":"Power Quality Disturbance Recognition Based on Wavelet Transform and Convolutional Neural Network","authors":"Wenhui Hong, Ziwen Liu, Xuyan Wu","doi":"10.1109/ICAICA52286.2021.9498060","DOIUrl":null,"url":null,"abstract":"Power quality (PQ) interference has caused many adverse effects on industry and life. In order to improve the accuracy of power quality disturbance identification, a hybrid detection method based on wavelet transform and convolutional neural network is proposed in this paper, which is for the recognition of power quality disturbance. Wavelet transform can extract the time-frequency domain features of perturbation signals, and convolutional neural network can recognize and classify these features. In order to test the performance of the proposed method, several experiments have been conducted. Firstly, mathematical modelling for seven kinds of power quality disturbances is carried out by this paper. Secondly, identification experiments is processed. Finally, some common methods are used as comparison to experiments. The obtained experimental results reveal that the proposed method has high accuracy and stable performance.","PeriodicalId":121979,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA52286.2021.9498060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Power quality (PQ) interference has caused many adverse effects on industry and life. In order to improve the accuracy of power quality disturbance identification, a hybrid detection method based on wavelet transform and convolutional neural network is proposed in this paper, which is for the recognition of power quality disturbance. Wavelet transform can extract the time-frequency domain features of perturbation signals, and convolutional neural network can recognize and classify these features. In order to test the performance of the proposed method, several experiments have been conducted. Firstly, mathematical modelling for seven kinds of power quality disturbances is carried out by this paper. Secondly, identification experiments is processed. Finally, some common methods are used as comparison to experiments. The obtained experimental results reveal that the proposed method has high accuracy and stable performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波变换和卷积神经网络的电能质量扰动识别
电能质量干扰对工业和生活造成了诸多不利影响。为了提高电能质量扰动识别的准确性,本文提出了一种基于小波变换和卷积神经网络的混合检测方法,用于电能质量扰动识别。小波变换可以提取扰动信号的时频域特征,卷积神经网络可以对这些特征进行识别和分类。为了验证所提方法的性能,进行了若干实验。本文首先对7种电能质量扰动进行了数学建模。其次,对识别实验进行处理。最后,用几种常用的方法与实验进行比较。实验结果表明,该方法精度高,性能稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Application of BP Neural Network Based on Genetic Algorithm in Heartbeat Mechanism Research on strategy of intelligent disinfection robot based on distributed constraint optimization Design a Markov Decision Process-Based Dynamic Deadband Threshold Strategy for Primary Frequency Response Control Detecting shilling groups in recommender systems based on hierarchical topic model BERT BiLSTM-Attention Similarity Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1