A Self-Training Learning Document Binarization Framework

Bolan Su, Shijian Lu, C. Tan
{"title":"A Self-Training Learning Document Binarization Framework","authors":"Bolan Su, Shijian Lu, C. Tan","doi":"10.1109/ICPR.2010.780","DOIUrl":null,"url":null,"abstract":"Document Image Binarization techniques have been studied for many years, and many practical binarization techniques have been developed and applied successfully on commercial document analysis systems. However, the current state-of-the-art methods, fail to produce good binarization results for many badly degraded document images. In this paper, we propose a self-training learning framework for document image binarization. Based on reported binarization methods, the proposed framework first divides document image pixels into three categories, namely, foreground pixels, background pixels and uncertain pixels. A classifier is then trained by learning from the document image pixels in the foreground and background categories. Finally, the uncertain pixels are classified using the learned pixel classifier. Extensive experiments have been conducted over the dataset that is used in the recent Document Image Binarization Contest(DIBCO) 2009. Experimental results show that our proposed framework significantly improves the performance of reported document image binarization methods.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Document Image Binarization techniques have been studied for many years, and many practical binarization techniques have been developed and applied successfully on commercial document analysis systems. However, the current state-of-the-art methods, fail to produce good binarization results for many badly degraded document images. In this paper, we propose a self-training learning framework for document image binarization. Based on reported binarization methods, the proposed framework first divides document image pixels into three categories, namely, foreground pixels, background pixels and uncertain pixels. A classifier is then trained by learning from the document image pixels in the foreground and background categories. Finally, the uncertain pixels are classified using the learned pixel classifier. Extensive experiments have been conducted over the dataset that is used in the recent Document Image Binarization Contest(DIBCO) 2009. Experimental results show that our proposed framework significantly improves the performance of reported document image binarization methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个自训练学习文档二值化框架
文档图像二值化技术已经被研究了很多年,许多实用的二值化技术已经被开发出来并成功应用于商业文档分析系统中。然而,目前最先进的方法,不能产生良好的二值化结果,许多严重退化的文档图像。本文提出了一种用于文档图像二值化的自训练学习框架。基于已有的二值化方法,该框架首先将文档图像像素分为前景像素、背景像素和不确定像素三类;然后通过学习前景和背景类别中的文档图像像素来训练分类器。最后,使用学习到的像素分类器对不确定像素进行分类。在最近的文档图像二值化竞赛(DIBCO) 2009中使用的数据集上进行了大量的实验。实验结果表明,我们提出的框架显著提高了文献图像二值化方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comprehensive Evaluation on Non-deterministic Motion Estimation Coarse Scale Feature Extraction Using the Spiral Architecture Structure Research the Performance of a Recursive Algorithm of the Local Discrete Wavelet Transform Underwater Mine Classification with Imperfect Labels Scribe Identification in Medieval English Manuscripts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1