The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background

G. Agazie, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, B. Bécsy, L. Blecha, A. Brazier, P. Brook, S. Burke-Spolaor, R. Burnette, R. Case, M. Charisi, S. Chatterjee, K. Chatziioannou, B. Cheeseboro, Siyuan Chen, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, C. Cutler, M. DeCesar, D. DeGan, P. Demorest, Heling Deng, T. Dolch, B. Drachler, J. Ellis, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, N. Garver-Daniels, P. Gentile, K. A. Gersbach, J. Glaser, D. Good, K. Gultekin, J. Hazboun, S. Hourihane, K. Islo, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, T. C. Klein, N. Laal, M. Lam, W. Lamb, T. Lazio, N. Lewandowska, T. Littenberg, Tianyu Liu, A. Lommen, D. Lorimer, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, M. A. Mattson, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, P. Natarajan, C. Ng, D. Nice, S. Ocker, K. Olum, T. Pennucci, B. Perera, P. Petrov, N. Pol, H. Radovan
{"title":"The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background","authors":"G. Agazie, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, B. Bécsy, L. Blecha, A. Brazier, P. Brook, S. Burke-Spolaor, R. Burnette, R. Case, M. Charisi, S. Chatterjee, K. Chatziioannou, B. Cheeseboro, Siyuan Chen, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, C. Cutler, M. DeCesar, D. DeGan, P. Demorest, Heling Deng, T. Dolch, B. Drachler, J. Ellis, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, N. Garver-Daniels, P. Gentile, K. A. Gersbach, J. Glaser, D. Good, K. Gultekin, J. Hazboun, S. Hourihane, K. Islo, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, T. C. Klein, N. Laal, M. Lam, W. Lamb, T. Lazio, N. Lewandowska, T. Littenberg, Tianyu Liu, A. Lommen, D. Lorimer, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, M. A. Mattson, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, P. Natarajan, C. Ng, D. Nice, S. Ocker, K. Olum, T. Pennucci, B. Perera, P. Petrov, N. Pol, H. Radovan","doi":"10.3847/2041-8213/acdac6","DOIUrl":null,"url":null,"abstract":"We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars from the 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. The correlations follow the Hellings–Downs pattern expected for a stochastic gravitational-wave background. The presence of such a gravitational-wave background with a power-law spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess of 1014, and this same model is favored over an uncorrelated common power-law spectrum model with Bayes factors of 200–1000, depending on spectral modeling choices. We have built a statistical background distribution for the latter Bayes factors using a method that removes interpulsar correlations from our data set, finding p = 10−3 (≈3σ) for the observed Bayes factors in the null no-correlation scenario. A frequentist test statistic built directly as a weighted sum of interpulsar correlations yields p = 5 × 10−5 to 1.9 × 10−4 (≈3.5σ–4σ). Assuming a fiducial f −2/3 characteristic strain spectrum, as appropriate for an ensemble of binary supermassive black hole inspirals, the strain amplitude is 2.4−0.6+0.7×10−15 (median + 90% credible interval) at a reference frequency of 1 yr−1. The inferred gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations for a signal from a population of supermassive black hole binaries, although more exotic cosmological and astrophysical sources cannot be excluded. The observation of Hellings–Downs correlations points to the gravitational-wave origin of this signal.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/acdac6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140

Abstract

We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars from the 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. The correlations follow the Hellings–Downs pattern expected for a stochastic gravitational-wave background. The presence of such a gravitational-wave background with a power-law spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess of 1014, and this same model is favored over an uncorrelated common power-law spectrum model with Bayes factors of 200–1000, depending on spectral modeling choices. We have built a statistical background distribution for the latter Bayes factors using a method that removes interpulsar correlations from our data set, finding p = 10−3 (≈3σ) for the observed Bayes factors in the null no-correlation scenario. A frequentist test statistic built directly as a weighted sum of interpulsar correlations yields p = 5 × 10−5 to 1.9 × 10−4 (≈3.5σ–4σ). Assuming a fiducial f −2/3 characteristic strain spectrum, as appropriate for an ensemble of binary supermassive black hole inspirals, the strain amplitude is 2.4−0.6+0.7×10−15 (median + 90% credible interval) at a reference frequency of 1 yr−1. The inferred gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations for a signal from a population of supermassive black hole binaries, although more exotic cosmological and astrophysical sources cannot be excluded. The observation of Hellings–Downs correlations points to the gravitational-wave origin of this signal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
nanogravity 15年数据集:引力波背景的证据
我们报告了来自北美纳赫兹引力波天文台收集的15年脉冲星定时数据集的67颗脉冲星之间随机信号的多条证据。这种相关性遵循随机引力波背景的赫灵斯-唐斯模式。这种具有幂律谱的引力波背景的存在比只有独立脉冲星噪声且贝叶斯因子超过1014的模型更有利,而且这种模型比具有200-1000贝叶斯因子的不相关的普通幂律谱模型更有利,这取决于光谱建模的选择。我们使用一种从数据集中去除脉冲星间相关性的方法建立了后一种贝叶斯因子的统计背景分布,发现在零不相关情况下,观察到的贝叶斯因子的p = 10−3(≈3σ)。直接建立脉冲星间相关加权和的频率检验统计量得到p = 5 × 10−5至1.9 × 10−4(≈3.5σ-4σ)。假设一个适用于双超大质量黑洞吸气系综的基准f−2/3特征应变谱,在参考频率为1年−1时,应变振幅为2.4−0.6+0.7×10−15(中位数+ 90%可信区间)。推断出的引力波背景振幅和频谱与天体物理学对超大质量黑洞双星群信号的预期一致,尽管不能排除更多的奇异宇宙和天体物理学来源。对Hellings-Downs相关性的观察指出了这个信号的引力波起源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum: “Large Volcanic Event on Io Inferred from Jovian Sodium Nebula Brightening” (2019, ApJL, 871, L23) Voyager 1 Electron Densities in the Very Local Interstellar Medium to beyond 160 au Formation of Fan-spine Magnetic Topology through Flux Emergence and Subsequent Jet Production The First Robust Evidence Showing a Dark Matter Density Spike Around the Supermassive Black Hole in OJ 287 Evidence for a Redshifted Excess in the Intracluster Light Fractions of Merging Clusters at z ∼ 0.8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1