Implementing the beam and warming method on the hypercube

J. Bruno, P. Cappello
{"title":"Implementing the beam and warming method on the hypercube","authors":"J. Bruno, P. Cappello","doi":"10.1145/63047.63061","DOIUrl":null,"url":null,"abstract":"Numerical simulation of a wide range of physical phenomena typically involves enormous amounts of computation and, for scores of practical problems, these simulations cannot be carried out even on today's fastest supercomputers. The economic and scientific importance of many of these problems is driving the explosive research in computer architecture, especially the work aimed at achieving ultra high-speed computation by exploiting concurrent processing. Correspondingly, there is great interest in the design and analysis of numerical algorithms which are suitable for implementation on concurrent processor systems.\nIn this paper we consider the implementation of the Beam and Warming implicit factored method on a hypercube concurrent processor system. We present a set of equations and give the numerical method in sufficient detail to illustrate and analyze the problems which arise in implementing this numerical method. We show that there are mappings of the computational domain onto the nodes of a hypercube concurrent processor system which maintain the efficiency of the numerical method. We also show that better methods do not exist.","PeriodicalId":299435,"journal":{"name":"Conference on Hypercube Concurrent Computers and Applications","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Hypercube Concurrent Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/63047.63061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

Numerical simulation of a wide range of physical phenomena typically involves enormous amounts of computation and, for scores of practical problems, these simulations cannot be carried out even on today's fastest supercomputers. The economic and scientific importance of many of these problems is driving the explosive research in computer architecture, especially the work aimed at achieving ultra high-speed computation by exploiting concurrent processing. Correspondingly, there is great interest in the design and analysis of numerical algorithms which are suitable for implementation on concurrent processor systems. In this paper we consider the implementation of the Beam and Warming implicit factored method on a hypercube concurrent processor system. We present a set of equations and give the numerical method in sufficient detail to illustrate and analyze the problems which arise in implementing this numerical method. We show that there are mappings of the computational domain onto the nodes of a hypercube concurrent processor system which maintain the efficiency of the numerical method. We also show that better methods do not exist.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在超立方体上实现光束和加热方法
广泛的物理现象的数值模拟通常涉及大量的计算,对于许多实际问题,即使在当今最快的超级计算机上,这些模拟也无法进行。这些问题在经济和科学上的重要性推动了计算机体系结构的爆炸性研究,特别是旨在通过利用并发处理实现超高速计算的工作。相应地,设计和分析适合在并发处理器系统上实现的数值算法也引起了人们的极大兴趣。本文研究了Beam和warm隐式因子法在超立方并发处理器系统上的实现。我们提出了一组方程,并给出了足够详细的数值方法来说明和分析在实施该数值方法时出现的问题。我们证明了计算域映射到超立方体并发处理器系统的节点上,从而保持了数值方法的效率。我们还表明,不存在更好的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Task allocation onto a hypercube by recursive mincut bipartitioning Comparison of two-dimensional FFT methods on the hypercube Best-first branch-and bound on a hypercube An interactive system for seismic velocity analysis QED on the connection machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1