Scalable Analysis Techniques for Microprocessor Performance Counter Metrics

D. Ahn, J. Vetter
{"title":"Scalable Analysis Techniques for Microprocessor Performance Counter Metrics","authors":"D. Ahn, J. Vetter","doi":"10.1109/SC.2002.10066","DOIUrl":null,"url":null,"abstract":"Contemporary microprocessors provide a rich set of integrated performance counters that allow application developers and system architects alike the opportunity to gather important information about workload behaviors. Current techniques for analyzing data produced from these counters use raw counts, ratios, and visualization techniques help users make decisions about their application performance. While these techniques are appropriate for analyzing data from one process, they do not scale easily to new levels demanded by contemporary computing systems. Very simply, this paper addresses these concerns by evaluating several multivariate statistical techniques on these datasets. We find that several techniques, such as statistical clustering, can automatically extract important features from the data. These derived results can, in turn, be fed directly back to an application developer, or used as input to a more comprehensive performance analysis environment, such as a visualization or an expert system.","PeriodicalId":302800,"journal":{"name":"ACM/IEEE SC 2002 Conference (SC'02)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2002 Conference (SC'02)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2002.10066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

Contemporary microprocessors provide a rich set of integrated performance counters that allow application developers and system architects alike the opportunity to gather important information about workload behaviors. Current techniques for analyzing data produced from these counters use raw counts, ratios, and visualization techniques help users make decisions about their application performance. While these techniques are appropriate for analyzing data from one process, they do not scale easily to new levels demanded by contemporary computing systems. Very simply, this paper addresses these concerns by evaluating several multivariate statistical techniques on these datasets. We find that several techniques, such as statistical clustering, can automatically extract important features from the data. These derived results can, in turn, be fed directly back to an application developer, or used as input to a more comprehensive performance analysis environment, such as a visualization or an expert system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微处理器性能计数器指标的可扩展分析技术
现代微处理器提供了一组丰富的集成性能计数器,使应用程序开发人员和系统架构师都有机会收集有关工作负载行为的重要信息。当前用于分析这些计数器产生的数据的技术使用原始计数、比率和可视化技术,帮助用户对其应用程序性能做出决策。虽然这些技术适合于分析来自一个进程的数据,但它们不容易扩展到现代计算系统所要求的新水平。很简单,本文通过评估这些数据集上的几种多元统计技术来解决这些问题。我们发现一些技术,如统计聚类,可以自动从数据中提取重要特征。这些导出的结果可以直接反馈给应用程序开发人员,或者用作更全面的性能分析环境(如可视化或专家系统)的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interoperable Web Services for Computational Portals Advanced Visualization Technology for Terascale Particle Accelerator Simulations Library Support for Hierarchical Multi-Processor Tasks Utilization of Departmental Computing GRID System for Development of an Artificial Intelligent Tapping Inspection Method, Tapping Sound Analysis 16.4-Tflops Direct Numerical Simulation of Turbulence by a Fourier Spectral Method on the Earth Simulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1