Indoor UAV Height Estimation with Multiple Model-Detecting Particle Filters

Hechuan Wang, Xiaokun Zhao, M. Bugallo
{"title":"Indoor UAV Height Estimation with Multiple Model-Detecting Particle Filters","authors":"Hechuan Wang, Xiaokun Zhao, M. Bugallo","doi":"10.23919/eusipco55093.2022.9909934","DOIUrl":null,"url":null,"abstract":"The precision of indoor localization, especially height estimation, is critical to unmanned aerial vehicle (UAV) navigation to avoid crashes because indoor environments are narrow and complex. The lack of satellite-based navigation signals makes this task very challenging. Moreover, objects in indoor environments could be randomly shaped and in motion, making map-based navigation unreliable. There exist solutions utilizing advanced sensor arrays such as laser scanners or multiple cameras, but the UAVs' weight load and computational resources are limited. In this paper, we propose a filtering-based method that allows for estimation of the height of the UAV by stand -alone range finders. Model-detecting particle filters are used to detect changes in objects while estimating the height of the UAV simultaneously. Multiple filters are utilized to speed up the computation. Numerical experiments show that the proposed method is more accurate than other methods.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"1102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The precision of indoor localization, especially height estimation, is critical to unmanned aerial vehicle (UAV) navigation to avoid crashes because indoor environments are narrow and complex. The lack of satellite-based navigation signals makes this task very challenging. Moreover, objects in indoor environments could be randomly shaped and in motion, making map-based navigation unreliable. There exist solutions utilizing advanced sensor arrays such as laser scanners or multiple cameras, but the UAVs' weight load and computational resources are limited. In this paper, we propose a filtering-based method that allows for estimation of the height of the UAV by stand -alone range finders. Model-detecting particle filters are used to detect changes in objects while estimating the height of the UAV simultaneously. Multiple filters are utilized to speed up the computation. Numerical experiments show that the proposed method is more accurate than other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多模型检测粒子滤波的室内无人机高度估计
由于室内环境狭窄而复杂,室内定位尤其是高度估计的精度对无人机导航避免碰撞至关重要。由于缺乏卫星导航信号,这项任务非常具有挑战性。此外,室内环境中的物体可能是随机形状和运动的,这使得基于地图的导航不可靠。现有的解决方案利用先进的传感器阵列,如激光扫描仪或多个摄像头,但无人机的重量负载和计算资源有限。在本文中,我们提出了一种基于滤波的方法,该方法允许使用独立测距仪估计无人机的高度。模型检测粒子滤波器用于检测目标的变化,同时估计无人机的高度。利用多个滤波器来加快计算速度。数值实验表明,该方法比其他方法具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1