Real-Time Control Using Convolution Neural Network for Self-Driving Cars

Woraphicha Dangskul, Kunanon Phattaravatin, Kiattisak Rattanaporn, Yuttana Kidjaidure
{"title":"Real-Time Control Using Convolution Neural Network for Self-Driving Cars","authors":"Woraphicha Dangskul, Kunanon Phattaravatin, Kiattisak Rattanaporn, Yuttana Kidjaidure","doi":"10.1109/ICEAST52143.2021.9426255","DOIUrl":null,"url":null,"abstract":"In this paper, we perform an Autonomous deep learning robot using an end-to-end system. The system operates as the controller for navigating and driving automatically. The deep learning robot used Convolution Neural Network (CNN). The CNN architecture is Mobile net with Softmax activation function. The Softmax activation function predicts the probability of steering angles. In the training phase, the CNN model learns from images and steering angles that are collected during the driving. In the testing phase, we apply the diversified environment to the trained CNN model. The CNN model accuracy is up to 85.03%. The results showed that the CNN is able to learn the diversified tasks of lanes and roads following with and without lane marking, direction planning and automatically control. Also, the CNN can replace the conventional PID controller.","PeriodicalId":416531,"journal":{"name":"2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","volume":"727 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAST52143.2021.9426255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we perform an Autonomous deep learning robot using an end-to-end system. The system operates as the controller for navigating and driving automatically. The deep learning robot used Convolution Neural Network (CNN). The CNN architecture is Mobile net with Softmax activation function. The Softmax activation function predicts the probability of steering angles. In the training phase, the CNN model learns from images and steering angles that are collected during the driving. In the testing phase, we apply the diversified environment to the trained CNN model. The CNN model accuracy is up to 85.03%. The results showed that the CNN is able to learn the diversified tasks of lanes and roads following with and without lane marking, direction planning and automatically control. Also, the CNN can replace the conventional PID controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的自动驾驶汽车实时控制
在本文中,我们使用端到端系统执行自主深度学习机器人。该系统作为自动导航和自动驾驶的控制器。深度学习机器人使用卷积神经网络(CNN)。CNN架构是带有Softmax激活功能的移动网络。Softmax激活功能预测转向角度的概率。在训练阶段,CNN模型从驾驶过程中收集的图像和转向角度进行学习。在测试阶段,我们将多样化的环境应用于训练好的CNN模型。CNN模型准确率高达85.03%。结果表明,CNN能够学习车道和道路的多样化任务,包括有车道标记和没有车道标记、方向规划和自动控制。同时,CNN可以代替传统的PID控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile Application for Basic Computer Troubleshooting using TensorFlow Lite Exploitation of IoTs for PMU in Tethered Drone Multi-Tier Model with JSON-RPC in Telemedicine Devices Authentication and Authorization Protocol Neuro-fuzzy Model with Neighborhood Component Analysis for Air Quality Prediction Extremely Low-Power Fifth-Order Low-Pass Butterworth Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1