Czech Sign Language Single Hand Alphabet Letters Classification

J. Krejsa, S. Vechet
{"title":"Czech Sign Language Single Hand Alphabet Letters Classification","authors":"J. Krejsa, S. Vechet","doi":"10.1109/ME49197.2020.9286667","DOIUrl":null,"url":null,"abstract":"The paper deals with the classification of images of Czech sign language alphabet, single handed version in particular, without diacritics. The classification is performed by convolution neural network using TensorFlow computational library. Network topology, data acquisition and automatic labelling and obtained results are described in the paper. The accuracy on the test data - captured images of a person not previously seen by the network – was over 87%.","PeriodicalId":166043,"journal":{"name":"2020 19th International Conference on Mechatronics - Mechatronika (ME)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Conference on Mechatronics - Mechatronika (ME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ME49197.2020.9286667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper deals with the classification of images of Czech sign language alphabet, single handed version in particular, without diacritics. The classification is performed by convolution neural network using TensorFlow computational library. Network topology, data acquisition and automatic labelling and obtained results are described in the paper. The accuracy on the test data - captured images of a person not previously seen by the network – was over 87%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
捷克手语单手字母分类
本文研究了捷克手语字母表的图像分类,特别是无变音符的单手版本。利用TensorFlow计算库,采用卷积神经网络进行分类。文中介绍了网络拓扑结构、数据采集和自动标注,并给出了相应的结果。测试数据的准确率超过87%,这些数据是网络之前没有见过的人的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ME 2020 Cover Page Vibration Shapes Identification Applying Eulerian Video Magnification on Coffee Fruits to Study the Selective Harvesting Determinations of Stator Windings Thermal Model with Various Filling Factor Production of Polymer Frame Composites Using Industrial Robots The frequency characteristics of cyclic symmetry silicon gyroscope
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1