Non-negative Matrix Factorization for Dimensionality Reduction

Jbari Olaya, Chakkor Otman
{"title":"Non-negative Matrix Factorization for Dimensionality Reduction","authors":"Jbari Olaya, Chakkor Otman","doi":"10.1051/itmconf/20224803006","DOIUrl":null,"url":null,"abstract":"Abstract—What matrix factorization methods do is reduce the dimensionality of the data without losing any important information. In this work, we present the Non-negative Matrix Factorization (NMF) method, focusing on its advantages concerning other methods of matrix factorization. We discuss the main optimization algorithms, used to solve the NMF problem, and their convergence. The paper also contains a comparative study between principal component analysis (PCA), independent component analysis (ICA), and NMF for dimensionality reduction using a face image database.\nIndex Terms—NMF, PCA, ICA, dimensionality reduction.","PeriodicalId":433898,"journal":{"name":"ITM Web of Conferences","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITM Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/itmconf/20224803006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract—What matrix factorization methods do is reduce the dimensionality of the data without losing any important information. In this work, we present the Non-negative Matrix Factorization (NMF) method, focusing on its advantages concerning other methods of matrix factorization. We discuss the main optimization algorithms, used to solve the NMF problem, and their convergence. The paper also contains a comparative study between principal component analysis (PCA), independent component analysis (ICA), and NMF for dimensionality reduction using a face image database. Index Terms—NMF, PCA, ICA, dimensionality reduction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
降维的非负矩阵分解
摘要:矩阵分解方法所做的是在不丢失任何重要信息的情况下降低数据的维数。在这项工作中,我们提出了非负矩阵分解(NMF)方法,重点介绍了它相对于其他矩阵分解方法的优点。讨论了用于求解NMF问题的主要优化算法及其收敛性。本文还对基于人脸图像数据库的主成分分析(PCA)、独立成分分析(ICA)和NMF降维方法进行了比较研究。索引术语:nmf, PCA, ICA,降维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Price Prediction using Facebook Prophet Drowsiness Detection using EEG signals and Machine Learning Algorithms Aging mechanisms analysis of Graphite/LiNi0.80Co0.15Al0.05O2 lithium-ion batteries among the whole life cycle at different temperatures Android-based object recognition application for visually impaired Conception d’une séquence d’introduction dynamique du produit scalaire via une approche constructiviste intégrant la mécanique et les TIC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1