{"title":"Sparse-Aware Approach for Covariance Conversion in FDD Systems","authors":"C. López, J. Riba","doi":"10.23919/eusipco55093.2022.9909956","DOIUrl":null,"url":null,"abstract":"This paper proposes a practical way to solve the Uplink-Downlink Covariance Conversion (UDCC) problem in a frequency Division Duplex (FDD) communication system. The UDCC problem consists in the estimation of the Downlink (DL) spatial covariance matrix from the prior knowledge of the Uplink (UL) spatial covariance matrix without the need of a feedback transmission from the User Equipment (UE) to the Base Station (BS). Estimating the DL sample spatial covariance matrix is unfeasible in current massive Multiple-Input Multiple-Output (MIMO) deployments in frequency selective or fast fading channels due to the required large training overhead. Our method is based on the application of sparse filtering ideas to the estimation of a quantized version of the so-called Angular Power Spectrum (APS), being the common factor between the UL and DL spatial channel covariance matrices.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a practical way to solve the Uplink-Downlink Covariance Conversion (UDCC) problem in a frequency Division Duplex (FDD) communication system. The UDCC problem consists in the estimation of the Downlink (DL) spatial covariance matrix from the prior knowledge of the Uplink (UL) spatial covariance matrix without the need of a feedback transmission from the User Equipment (UE) to the Base Station (BS). Estimating the DL sample spatial covariance matrix is unfeasible in current massive Multiple-Input Multiple-Output (MIMO) deployments in frequency selective or fast fading channels due to the required large training overhead. Our method is based on the application of sparse filtering ideas to the estimation of a quantized version of the so-called Angular Power Spectrum (APS), being the common factor between the UL and DL spatial channel covariance matrices.