Few Data Diversification in Training Generative Adversarial Networks

Lucas Fontes Buzutti, C. Thomaz
{"title":"Few Data Diversification in Training Generative Adversarial Networks","authors":"Lucas Fontes Buzutti, C. Thomaz","doi":"10.5753/wvc.2021.18892","DOIUrl":null,"url":null,"abstract":"The first GANs have initially produced sharp images in relatively small resolution and with limited variations, and unstable training. Later works proposed new GAN models capable of generating sharp images in high resolution and with a high level of variation. However, these models use unlimited and highly diversified image sets. We discuss here the use of these models with real-world image sets, since they are composed of limited sample size sets.","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The first GANs have initially produced sharp images in relatively small resolution and with limited variations, and unstable training. Later works proposed new GAN models capable of generating sharp images in high resolution and with a high level of variation. However, these models use unlimited and highly diversified image sets. We discuss here the use of these models with real-world image sets, since they are composed of limited sample size sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生成对抗网络训练中的少量数据多样化
第一批gan最初以相对较小的分辨率和有限的变化产生清晰的图像,并且训练不稳定。后来的工作提出了新的GAN模型,能够产生高分辨率和高水平变化的清晰图像。然而,这些模型使用无限和高度多样化的图像集。我们在这里讨论这些模型与真实世界图像集的使用,因为它们由有限的样本量集组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coffee plant image segmentation and disease detection using JSEG algorithm Grocery Product Recognition to Aid Visually Impaired People Pavement Crack Segmentation using a U-Net based Neural Network Periocular authentication in smartphones applying uLBP descriptor on CNN Feature Maps Automatic Segmentation and ROI detection in cardiac MRI of Cardiomyopathy using q-Sigmoid as preprocessing step
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1