Impulsive Noise Reduction in Power Line Communication MAC Protocol with Adaptive Filtering Technique Using Network Simulator-3

Anton Joliz, Nair Madhavan, B. Goi, Ezra Morris
{"title":"Impulsive Noise Reduction in Power Line Communication MAC Protocol with Adaptive Filtering Technique Using Network Simulator-3","authors":"Anton Joliz, Nair Madhavan, B. Goi, Ezra Morris","doi":"10.1109/ICSGCE.2018.8556779","DOIUrl":null,"url":null,"abstract":"Power Line Communication (PLC) is one of the communication technologies that uses existing infrastructure for data transmission. Despite the potential to transmit data over power line, there exists a challenge to overcome the effects caused by the impulsive noise. There is a need for impulsive noise reduction to reduce its noise effects and increase the performance of the network. Generally, adaptive filter performs better than any other existing techniques in noise reduction. This study deals with the impulsive noise reduction using the adaptive filter. An adaptive filter using Least Mean Squares (LMS) algorithm is modelled for a PLC-MAC (Medium Access Control) network with 26 nodes using network simulator-3 (ns-3). The performance of this network without the presence of impulsive noise, with the presence of impulsive noise (without noise reduction) and with adaptive noise reduction is compared and analysed.","PeriodicalId":366392,"journal":{"name":"2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGCE.2018.8556779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Power Line Communication (PLC) is one of the communication technologies that uses existing infrastructure for data transmission. Despite the potential to transmit data over power line, there exists a challenge to overcome the effects caused by the impulsive noise. There is a need for impulsive noise reduction to reduce its noise effects and increase the performance of the network. Generally, adaptive filter performs better than any other existing techniques in noise reduction. This study deals with the impulsive noise reduction using the adaptive filter. An adaptive filter using Least Mean Squares (LMS) algorithm is modelled for a PLC-MAC (Medium Access Control) network with 26 nodes using network simulator-3 (ns-3). The performance of this network without the presence of impulsive noise, with the presence of impulsive noise (without noise reduction) and with adaptive noise reduction is compared and analysed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Network Simulator-3的电力线通信MAC协议自适应滤波抑制脉冲噪声
电力线通信(PLC)是一种利用现有基础设施进行数据传输的通信技术。尽管在电力线上传输数据具有潜力,但克服脉冲噪声的影响仍然是一个挑战。为了降低脉冲噪声的影响,提高网络的性能,需要对脉冲噪声进行降噪。一般来说,自适应滤波在降噪方面的效果优于现有的降噪技术。本文研究了利用自适应滤波器对脉冲噪声进行降噪的方法。使用网络模拟器-3 (ns-3)对具有26个节点的PLC-MAC(介质访问控制)网络建模了一个使用最小均方(LMS)算法的自适应滤波器。对无脉冲噪声、有脉冲噪声(不降噪)和自适应降噪情况下的网络性能进行了比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ICT Requirements and Challenges for Provision of Grid Services from Renewable Generation Plants A Low-Cost and Energy-Efficient Smart Dust Cleaning Technique for Solar Panel System Design and Implementation of a Maximum Power Point Tracking Algorithm for Wind Turbines Using PLC-SCADA On the Investigation and Experimental Analysis of Energy-Efficient Lighting for a University Building Investigation and Analyses of Energy-Efficient Technologies for HVAC and Lighting Systems via Energy Auditing Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1