A proposed variable sampling interval median chart for identifying out-of-control signals in process control

S. Saha, R. Parvin, P. Ng, M. Khoo, Xinying Chew
{"title":"A proposed variable sampling interval median chart for identifying out-of-control signals in process control","authors":"S. Saha, R. Parvin, P. Ng, M. Khoo, Xinying Chew","doi":"10.1109/ICCIT57492.2022.10055777","DOIUrl":null,"url":null,"abstract":"The assessment of variables that influence the estimation, control, and regulation of the quality of analytical testing processes is increasingly being done using computer simulation. The quality management of manufacturing firms is introduced as a data mining application. For quality control and production management, quality factor analysis is crucial. Numerous studies have investigated the variable sampling interval (VSI) chart for the process average. Despite being significantly more widely used than the median chart, when faced with extremes or unforeseen data sets that cast doubt on the normality assumption, the mean ($\\bar X$ ) chart is less resistant. The median chart, however, is more effective than the process average chart when outliers or extreme values are present in the process data being monitored. Since practitioners may believe that process shifts could have happened in the dataset because of the extreme values, incorrect inferences may be drawn. To solve this challenge, the variable sampling interval (VSI) median chart is proposed in this study. The VSI feature is used to enhance the performance of the median chart. The average time to signal (ATS) and expected average time to signal (EATS) criteria are used to evaluate the performance of the proposed charts. Based on the ATS and EATS criteria, the results show that the proposed VSI median chart outperforms the Shewhart (SH) median chart in detecting all sizes of shifts.","PeriodicalId":255498,"journal":{"name":"2022 25th International Conference on Computer and Information Technology (ICCIT)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT57492.2022.10055777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The assessment of variables that influence the estimation, control, and regulation of the quality of analytical testing processes is increasingly being done using computer simulation. The quality management of manufacturing firms is introduced as a data mining application. For quality control and production management, quality factor analysis is crucial. Numerous studies have investigated the variable sampling interval (VSI) chart for the process average. Despite being significantly more widely used than the median chart, when faced with extremes or unforeseen data sets that cast doubt on the normality assumption, the mean ($\bar X$ ) chart is less resistant. The median chart, however, is more effective than the process average chart when outliers or extreme values are present in the process data being monitored. Since practitioners may believe that process shifts could have happened in the dataset because of the extreme values, incorrect inferences may be drawn. To solve this challenge, the variable sampling interval (VSI) median chart is proposed in this study. The VSI feature is used to enhance the performance of the median chart. The average time to signal (ATS) and expected average time to signal (EATS) criteria are used to evaluate the performance of the proposed charts. Based on the ATS and EATS criteria, the results show that the proposed VSI median chart outperforms the Shewhart (SH) median chart in detecting all sizes of shifts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提出了一种用于辨识过程控制中失控信号的变采样间隔中值图
对影响分析测试过程质量的估计、控制和调节的变量的评估越来越多地使用计算机模拟来完成。作为数据挖掘的一种应用,介绍了制造企业的质量管理。在质量控制和生产管理中,质量因素分析是至关重要的。许多研究调查了过程平均值的可变采样间隔(VSI)图。尽管比中位数图更广泛地使用,但当面对极端情况或不可预见的数据集时,对正态性假设产生怀疑,平均值($\条形X$)图的抗阻力较小。然而,当被监视的过程数据中存在异常值或极值时,中位数图比过程平均图更有效。由于从业者可能会认为,由于极端值,数据集中可能发生了过程转移,因此可能会得出错误的推论。为了解决这一挑战,本研究提出了可变采样区间(VSI)中位数图。VSI特征用于增强中位数图的性能。平均发信号时间(ATS)和预期平均发信号时间(EATS)标准用于评估所建议图表的性能。基于ATS和EATS标准,结果表明所提出的VSI中位数图在检测所有大小的移位方面优于Shewhart (SH)中位数图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SlotFinder: A Spatio-temporal based Car Parking System Land Cover and Land Use Detection using Semi-Supervised Learning Comparative Analysis of Process Scheduling Algorithm using AI models Throughput Optimization of IEEE 802.15.4e TSCH-Based Scheduling: A Deep Neural Network (DNN) Scheme Towards Developing a Voice-Over-Guided System for Visually Impaired People to Learn Writing the Alphabets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1