Numerical Study of Transient Conjugate Heat Transfer in a Long Two-Phase Pipeline

Y. Fairuzov, Hector Arvizu Dal Piaz
{"title":"Numerical Study of Transient Conjugate Heat Transfer in a Long Two-Phase Pipeline","authors":"Y. Fairuzov, Hector Arvizu Dal Piaz","doi":"10.1115/imece2000-1536","DOIUrl":null,"url":null,"abstract":"\n A growing number of multiphase technology applications stimulate the development of reliable methods for modeling transient processes in two-phase systems in which the temperature field in the moving fluid and the temperature field in the bounding walls are directly dependent on each other. This situation presents a conjugate heat-transfer problem since the heat-transfer rate at the wall-fluid interface and local fluid conditions are not known a priori, and therefore need to be simultaneously calculated. Examples of such processes include the direct heating of multiphase pipelines, a change of heat load in evaporators of two-phase thermal control systems, startup or shutdown of systems with a two-phase working fluid. In this paper, direct electrical heating of a long two-phase pipeline has been modeled. The modeling of transient two-phase flow and heat transfer in the pipeline is based on two different mathematical formulations. In the first formulation, the transient heat conduction and the forced convection effects are rigorously taken into account. The second formulation assumes that the pipe wall and the fluid are in local thermal equilibrium. The effect of the thermal capacity of the pipe wall is taken into account by an additional term in the energy equation for the fluid flow. Such an approach allows significant simplifying the problem and reducing the computer running time. Numerical simulation of the sudden heat input to the pipe wall has been performed using both formulations of field equations. The practical significance of the results obtained is discussed.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A growing number of multiphase technology applications stimulate the development of reliable methods for modeling transient processes in two-phase systems in which the temperature field in the moving fluid and the temperature field in the bounding walls are directly dependent on each other. This situation presents a conjugate heat-transfer problem since the heat-transfer rate at the wall-fluid interface and local fluid conditions are not known a priori, and therefore need to be simultaneously calculated. Examples of such processes include the direct heating of multiphase pipelines, a change of heat load in evaporators of two-phase thermal control systems, startup or shutdown of systems with a two-phase working fluid. In this paper, direct electrical heating of a long two-phase pipeline has been modeled. The modeling of transient two-phase flow and heat transfer in the pipeline is based on two different mathematical formulations. In the first formulation, the transient heat conduction and the forced convection effects are rigorously taken into account. The second formulation assumes that the pipe wall and the fluid are in local thermal equilibrium. The effect of the thermal capacity of the pipe wall is taken into account by an additional term in the energy equation for the fluid flow. Such an approach allows significant simplifying the problem and reducing the computer running time. Numerical simulation of the sudden heat input to the pipe wall has been performed using both formulations of field equations. The practical significance of the results obtained is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长两相管道瞬态共轭传热数值研究
越来越多的多相技术应用刺激了两相系统瞬态过程建模的可靠方法的发展,在两相系统中,运动流体的温度场和边界壁的温度场直接相互依赖。这种情况出现了一个共轭传热问题,因为壁面-流体界面处的传热速率和局部流体条件先验未知,因此需要同时计算。这些过程的例子包括多相管道的直接加热,两相热控制系统蒸发器热负荷的变化,两相工作流体系统的启动或关闭。本文对长两相管道的直接电加热进行了建模。管道内瞬态两相流动和换热的建模基于两种不同的数学公式。在第一个公式中,严格考虑了瞬态热传导和强制对流效应。第二种公式假定管壁和流体处于局部热平衡状态。流体流动的能量方程中有一个附加项考虑了管壁热容量的影响。这种方法可以大大简化问题并减少计算机运行时间。用两种场方程的形式对管道壁面的突然热输入进行了数值模拟。讨论了所得结果的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mass Transfer Process of Gaseous Carbon Dioxide Into Water Jet Through Orifice Mixing System A New Facility for Measurements of Three-Dimensional, Local Subcooled Flow Boiling Heat Flux and Related Critical Heat Flux Numerical Solution of Thermal and Fluid Flow With Phase Change by VOF Method Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components Some Aspects of Critical-Heat-Flux Enhancement in Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1